

ALMAGAL: ALMA Evolutionary study of High Mass Protocluster Formation in the Galaxy

2018.1.00435.L

ABSTRACT

High-mass stars form in clustered environments and have a prominent role in shaping galaxies, yet fundamental questions about the physics responsible to fragment molecular Clumps into Cores are still open. What is the number density of core fragments in dense clumps as a function of evolution? To what extent the fragmentation process is driven by larger-scale dynamics in clumps or filaments? ALMA was built to do transformational science and allows today for the first time to answer these questions with high statistical significance. ALMAGAL will observe 1mm continuum and lines toward more than 1000 dense clumps with M>500 M_sun and d < 7 kpc. The sample covers all evolutionary stages from IRDC to HII regions from the tip of the Bar to the outskirts of the Galaxy. The C43-4/C43-1/ACA combination at 0.1 mJy sensitivity will enable a complete study of the clump-to-core fragmentation process down to at least 2500AU and 0.3 M_sun Galaxy-wide, mapping the temperature and the local/global infall velocity patterns of the cores-hosting clumps. ALMAGAL publicly accessible data cubes and catalogs will be an unvaluable legacy of ALMA, that will allow numerous community followup studies.

PI NAME:	Sergio Molina	ri		SCIENCE CATEGORY:	ISM, star formation and astrochemistry				
ESTIMATED 12M TIME:	125.3 h	ESTIMATED ACA TIME:	222.1 h	ESTIMATED NON-STANDARI MODE TIME (12-M):	0.0 h				
CO-PI NAME(S): (Large & VLBI Proposals only)	Paul Ho; Edwi	Paul Ho; Edwin Bergin; Peter Schilke							
CO-INVESTIGATOR NAME(S):	Alvaro Sanchez-Monge; Leonardo Bronfman; Melvin Hoare; Riccardo Cesaroni; Fumitaka Nakamura; Henrik Beuther; Davide Elia; Gary Fuller; Nicolas Peretto; Alessio Traficante; Qizhou Zhang; Rene Plume; Ralf Klessen; Stefanie Walch; Danae Polychroni; Hauyu Baobab Liu; Sheng-Yuan Liu; Maite Beltran; Manuel Merello; Leonardo Testi; Friedrich Wyrowski; John Bally; Dariusz Lis; Pamela Klaassen; Luke Maud; Yanett Contreras; Floris van der Tak; Aida Ahmadi; Hans Zinnecker; James Campbell; Katharine Johnston; Joseph Mottram; Stuart Lumsden; Patrick Koch; Michihiro Takami; Yi-Jehng Kuan; Yu-Nung Su; Oscar Morata; Ya-Wen Tang; Kuo-Song Wang; Vivien Chen; Sheng-Li Qin; Ricardo Finger; Kazi Rygl; Eugenio Schisano; Patricio Sanhueza; Thomas Henning; Luca Moscadelli; Rolf Kuiper; Crystal Brogan; Brian Svoboda; Cara								
DUPLICATE OBSERVATION JUSTIFICATION:	We have chec duplications, b our proposal r	ked for duplication, out either spectral or not to count as as du	and found none spatial resolution plication.	according to the criteria of ALMA. n, frequencies or sensitivity were	There are some source sufficiently different from				

	REF	PRESENTATIVE SCIEN	CE GOALS	(UP TO FIRST 30))		
SCIENCE GOAL	P	DSITION	BAND	ANG.RES.(")	LAS.(")	ACA?	NON-STANDARD MODE
High-mass stars 0 cluster 1	ICRS 18:16:33.	0000, -16:51:21.000	6	0.400	30.000	Y	Ν
High-mass stars 0 cluster 2	ICRS 18:43:02.	2500, -04:41:48.800	6	0.400	30.000	Y	Ν
High-mass stars 0 cluster 3	ICRS 16:36:28.	3000, -47:41:46.800	6	0.400	30.000	Y	Ν
High-mass stars 0 cluster 4	ICRS 17:01:18.	4000, -42:49:37.000	6	0.400	30.000	Y	Ν
High-mass stars 0 cluster 5	ICRS 14:26:52.	4000, -60:38:20.700	6	0.400	30.000	Y	Ν
High-mass stars 0 cluster 6	ICRS 14:49:07.	8000, -59:24:45.600	6	0.400	30.000	Y	N
High-mass stars 0 cluster 7	ICRS 06:58:44.	3500, -03:41:09.900	6	0.400	30.000	Y	N
High-mass stars 0 cluster 8	ICRS 07:19:35.	9300, -17:39:18.000	6	0.400	30.000	Y	N
High-mass stars 0 cluster 9	ICRS 07:45:07.	5000, -25:32:16.900	6	0.400	30.000	Y	N
High-mass stars 0 cluster 10	ICRS 12:27:08.	5000, -62:49:45.300	6	0.400	30.000	Y	N
High-mass stars 0 cluster 11	ICRS 10:23:20.	0000, -57:52:31.400	6	0.400	30.000	Y	Ν
High-mass stars 0 cluster 12	ICRS 10:57:43.	0000, -59:44:57.800	6	0.400	30.000	Y	Ν
High-mass stars 0 cluster 13	ICRS 09:04:22.	2000, -48:54:30.300	6	0.400	30.000	Y	Ν
High-mass stars 0 cluster 14	ICRS 09:24:27.	0000, -51:59:16.500	6	0.400	30.000	Y	N
High-mass stars 0 cluster 15	ICRS 08:29:14.	2000, -41:10:47.600	6	0.400	30.000	Y	N
High-mass stars 0 cluster 16	ICRS 08:14:53.	9000, -35:33:02.800	6	0.400	30.000	Y	N
High-mass stars 1	ICRS 18:32:43.	8000, -09:09:01.800	6	0.400	30.000	Y	N
High-mass stars 2	ICRS 16:00:31.	9000, -53:12:48.500	6	0.400	30.000	Y	N
High-mass stars 3	ICRS 18:42:42.	5000, -04:15:34.400	6	0.400	30.000	Y	N
High-mass stars 4	ICRS 13:01:26.	5000, -62:25:48.600	6	0.400	30.000	Y	N
High-mass stars 5	ICRS 15:43:22.	5000, -54:21:33.200	6	0.400	30.000	Y	Ν
Total # Science Goals : 21							
SCHEDULING TIME CON	ISTRAINTS	NONE		TIME ESTIMATES	OVERRIDD	EN ?	No

1 Scientific Justification

1.1 Scientific Rationale

High-mass stars dominate the feedback processes in galaxies, through input of mechanical (outflows, winds, supernovae) and radiative (UV creating HII regions, X-rays) energy. Particularly through supernova explosions, they can shape whole galaxies [4]. They also enrich the ISM with heavy elements, which in turn modifies the star formation process. Many low-mass stars, including our sun, formed in clusters containing high-mass stars [39]. Yet, their formation processes differ from low-mass stars in significant ways: while the Kelvin-Helmholtz timescale of low-mass stars is significantly longer than the time required to assemble them, for any reasonable accretion rate it is shorter for high-mass stars. Hence, high-mass stars will continue accreting up to and even after reaching the main sequence. The combination of being deeply embedded in dusty cores through most of their evolution, their scarcity and correspondingly high average distance together with evolution in clusters with many sources close together make the observations challenging.

In a recent review, Schilke [30] identified four main open questions in high-mass star formation which need investigation in a statistically relevant sample. Three of these questions we want to investigate with the current proposal in a large sample to provide, for the first time, statistically significant results (the fourth, about magnetic fields, cannot be tackled by ALMA in a large sample):

- Q1: What do the initial conditions look like how fragmented are the cores and what are their density profiles? ALMA mapping of dense cores in a large sample of high-mass clumps and sophisticated modeling are necessary.
- Q2: Are high-mass cores connected to a larger cloud mass reservoir? This can be studied through observations of mass-flow and feedback in core-hosting clumps and filamentary structures.
- Q3: Are there disks around high-mass (O-type) stars and what do they look like? A complete sample of reliable candidates for high-resolution ALMA follow-up is needed.

Most high-mass stars exist in a clustered environment ([20,34,2,31]), so their formation must involve breaking up of molecular **clumps** (linear scales of 0.5-1.0 pc) into **cores** (linear scales ≤ 0.1 pc), as indeed observed at high spatial resolution at mm wavelengths [33]. A full understanding of the **fragmentation process** and its role in allowing high-mass stars to collect material up to their final mass is still elusive. Thermal Jeans mass fragmentation leads to low-mass clumps/cores which are smaller than the observed masses of high-mass stars (M $\geq 8M_{\odot}$). Mechanisms to stop fragmentation and delay collapse allowing the collection of enough gas in existing fragments to form massive stars are a possible solution. Turbulent support (e.g. [21]) or magnetic fields and radiation feedback (e.g. [10,19]) have been invoked. In this model family (hereafter monolithic collapse) the final stellar mass of the emerging stars is pre-assembled in the cores, and one would expect to find high-mass monolithic prestellar cores. Yet, the search for high-mass protostellar clumps without any sign of star formation has turned up only very few candidates (e.g. [40], [3]).

In the more dynamical scenario of competitive accretion, cores compete [37] for gas from the cloud mass reservoir that is not initially local to the core itself [5], and high-mass monolithic prestellar cores do not exist [38]. Infall motions would be dominated by accretion from the cloud onto the core. And indeed observations reveal **large scale infall motions** in massive star-forming regions, showing high-mass clumps not to be isolated from the cloud mass reservoir, but to globally accrete while star formation is internally ongoing (e.g [32,29,16,14]). Theory shows that infall motion is crucial both for initiating the formation of high-mass stars, and in subsequent evolutionary stages for maintaining accretion flows to increase the stellar mass (e.g. [44,45,46]). Millimeter interferometry has already started to tackle several of these issues by observing relatively small samples of intermediate and high-mass star forming regions with ALMA ([26,6,9,8,33,41], and approved ALMA Programs, e.g., by team members G. Fuller, L. Maud) and NOEMA (CORE, PI H. Beuther) covering several tens of

Figure 1: a) (left) Galactic distribution of Hi-GAL clumps (thin grey dots) with ALMAGAL selected target clumps with symbol size $\propto M_c$ (clump mass) and color coded by Σ_c (clump surface density). The Galactic Center is at the (0,0) position; the dashed circle is the limit of heliocentric distance in our sample. b) (right) $L_{bol}-M_{clump}$ plot for the 1062 selected clumps (color-coded by T_{dust} from ~8K (red) to ~40K (blue); the black lines are the evolutionary tracks from [22] with plus-symbols indicating Hi-GAL sources associated with HII regions [7]. The magenta and cyan lines are the L/M=1 threshold for CH_3C_2H detection found in [25], and the L/M=10 threshold above which $T_{gas} \propto L/M$ [25].

objects from the early stage InfraRed Dark Clouds (IRDCs) to HII regions. Multiplicity of fragments in resolved clumps are found to vary considerably in different regions [42], and the notion of a Core Mass Function (CMF) resembling the stellar IMF [17] has been recently challenged in a very highmass star formation region W43-MM1 [41]. Chemical diversity is found in 5 cores in which the G28.34+0.06 P1 clump is resolved [33], that can be traced to different evolutionary stages, similarly in about 20 cores in NGC6334I [6]. Ultimately, the **data obtained so far are not conclusive**, due to the **lack of a statistically relevant sample** of high spatial resolution observations of high-mass clumps, a situation we plan to rectify with this proposal.

1.2 Immediate objectives

To answer our questions, the spatial distribution of dense cores as a function of mass within dense clumps, their CMF and their evolution both in morphology and in total number, as well as the influence of global infall on clump-scales for the mass evolution are the crucial observables that need to be measured from the nearly-quiescent stage (i.e. IRDCs) to the formation of the first ZAMS stars, and compared to predictions from numerical simulations.

This objective can be pursued by mapping at 1.3 mm (Band 6) with large spatial dynamic range (see §2.2 for more details) a statistically significant sample of dense clumps with masses greater than $500M_{\odot}$ within 7 kpc, spread over 3-14 kpc Galactocentric distance ranging from the near tip of the Galactic Bar to the outskirt of the Milky Way beyond the Solar circle (Fig. 1a), and over the full evolutionary path from the IRDC to the HII stage (Fig. 1b). In the following, we will describe in detail how we intend to contribute to answering the questions Q1 to Q3 with this proposal:

1. To fully address Q1, we want to detect dense cores down to sub-solar mass and to a minimum linear scale of at least 2500 AU (i.e. the Jeans length for T~15K and $n \sim 10^7 \text{cm}^{-3}$) over the entire sample. We will be able to **determine from the continuum the census and mass function** of dense cores complete to $0.3M_{\odot}$ (at 3σ) sufficient to reliably sample, e.g., the peak of the CMF in a low/intermediate-mass SF region like Aquila [17]. We will have minimal missing-flux problems because our setup (§2.2) ensures that emission is recovered from all scales up to ~30".

The data are subject to biases, most important due to source confusion at the low-mass end, which will distort the resulting CMF. This is a well-known problem in galaxy surveys, and the well-established Bayesian P(D) method has been developed to recover the original distribution, which we

intend to use (see e.g. [13]), and our website¹ for preliminary studies). We will determine the core variance and evolution as a function of the evolutionary stage of the hosting dense clumps, their mass, surface density and location in the Galaxy. The complement of lines accessible with our setup is an adequate toolbox to determine these variables from early and cold cores (using e.g. DCN(3-2)), to warm (using e.g. $CH_3OH(4(2, 2) - 3(1, 2))$) and hot cores (with CH_3CN). The detection of outflows will distinguish pre-stellar (no outflows) from protostellar (outflows) cores. The **variation in number of cores and in shape and slope at the high-mass end of the CMF** as a function of the host clump evolutionary stage will provide critical clues on the star formation history inside clumps (burst, accelerating, continuous), and a direct handle on the probability of core-merging during the evolution of the hosting clump with good statistics. For example, a top-heavy CMF dominated by early cores will point toward mini-starburst initial conditions (e.g. [41]), while an IMF-like CMF with distributed core evolutionary stages would be more suggestive of a continuous SF history. More quantitatively, observed CMFs will be compared to those provided by dedicated numerical simulations that include a fairly complete suite of physical processes (e.g. [49]), run with initial conditions taylored to the observed regions.

2. To fully address Q2 and more in general the relationships between cores and their hosting clumps we will measure the **core-to-core velocity dispersion of all cores**, using the peak line velocities of CH₃CN and/or ¹³CO or C¹⁸O, and relate that to the systemic velocity and the velocity dispersion of the hosting clumps gas traced by ¹³CO or C¹⁸O picked up from cores-free clump locations. In this way we will determine if the velocity dispersion of the cores is more compatible with a relatively static evolution of isolated clumps, showing comparable line widths in cores and clump gas, or with a more dynamic picture where cores are connected to the ambient cloud structure, with the line width of the clump gas resulting from a composition of cores velocities as proposed by [43]. Our setup (§2.2) ensures that line emission will be recovered from all spatial scales from 0".4 up to 30".

We will use CH₃CN and H₂CO to model the **temperature** in cores and clumps. The H₂CO thermometer is predominantly sensitive to dense (n ~ 10^4 - 10^5 cm⁻³), warm (T_G > 20K) gas [36]. RADEX [12] radiative transfer modeling will provide accurate gas temperatures of the detected clumps at the target minimum linear scale of 2500 AU (see Fig. 2 for the expected S/N based on real ALMA data).

Line profile analysis of H₂CO will not only characterize the degree of turbulence in the clump gas, but also map and characterize infall-like patterns using $C^{18}O(2-1)$ and other optically thin tracers as reference spectra for systemic clump gas. Our setup including the ACA ensures that we will reliably detect global infall patterns. ¹³CO(2-1) and SiO(5-4) will serve to characterize outflows.

We will also perform clump-to-core multiscale simulations following the collapse of massive clumps [47] complete with photoionisation feedback and coupled to state of the art radiative transfer codes (such as RADMC) that we will use to predict line observables tracing the dynamics of clump gas as well density and temperature profiles in clumps and cores.

The observations will also reveal the inner part of **filamentary structures linking the surrounding cloud to the cores** (e.g.[23]) and thus assess the importance of mass flow from the parent cloud as well as connections between cores. Full exploration of this, however, will require larger maps in a follow-up project.

3. As a contribution to **Q3**, we will be able to detect **rotating toroidal structures** or **circumbinary disks** on scale of a few 1000 AU, and identify hundreds of Keplerian accretion disk candidates for future high resolution follow-up studies. With the current resolution we will not be able to resolve circumstellar disks around typical O- and B-type YSOs [1,8] for most source distances. Collimated outflows are indirect evidence for accretion disks, and will serve as a proxy for determining the accretion rate (related to Q2).

¹https://almagal.astro.uni-koeln.de

2 Description of observations

We will pursue our goals by analyzing a large and statistically significant data set of many clumps using one pointing per source. We are aware that the Cycle 5 large project ALMA-IMF (PI F. Motte) pursues similar goals with a different strategy: larger maps of a smaller number of sources. After exchange with the ALMA-IMF team, both teams are convinced that the two approaches are highly complementary and, since the ultimate study (large maps of a large number of sources) would require unrealistic amounts of time, both approaches are needed to understand the process of high-mass star formation. In case of success of our large proposal, we intend to stay in close scientific contact with the ALMA-IMF team to advance the field in a fruitful exchange of methods and results.

2.1 Target selection

1062 targets were selected from the catalog of dense clumps ([35], Merello et al. in prep.) based on the Hi-GAL 70-500 μ m photometry [24] complemented with ancillary data at $\lambda < 24 \mu \text{m}$ and $\lambda > 870 \mu \text{m}$, for distances < 7 kpc and masses > 500 M_{\odot} , including the tip of the Bar (but excluding the CMZ). The sample is complete for the selection criteria; its size for this proposal is justified by the need to have statistical significance for subsamples defined e.g. by source mass, evolutionary status, galactocentric distance etc. This selection includes 180 wellstudied mid-IR bright MYSOs from the RMS survey [47], representing the stage just prior to the UCHII region phase. Cross-comparison with CO surveys of the Galactic Plane allowed distance estimates following [28] and hence determination of clump masses (M)and bolometric luminosities (L). More details can be found on our website¹. Both the L/M and the shape of the SED for $\lambda < 70 \mu m$ can be used as a broad evolutionary classification of the clumps following [22]. Fig. 1b shows the L - M plot for the 1062 target clumps. The plus-symbols in Fig. 1b mark the location of the Hi-GAL clumps with HII counterparts ([27,7]) in the CORNISH survey and occupy the re-

Figure 2: Up-left: Model of a star-forming region based on ALMA data of G29.96 plus extended emission. Up-right: same data run through the ALMA simulator for our setup and integration time. The well-recovered sources structure is a fair representation of what our setup will provide. Bottom: simulated spectra of two cores. Even on the weaker core the lines can be detected and analyzed.

gion above L/M=10, showing that our sample of 1062 targets spans the entire path from IRDC-hosted clump to the HII region phase. Clumps surface densities are above the $\Sigma \geq 0.1 \text{ g cm}^{-2}$ threshold that is critical for high-mass star formation [18,15] (see the website¹ for more information on sources).

2.2 Observing setup

The 217-220GHz frequency range gives access to 13 CO and C¹⁸O (for column density and velocity structure), SiO (outflows), three H₂CO lines (temperature/density and infall tracer), CH₃CN (temperature, velocity structure), and several other species (DCN, OCS, ...). All targets will be observed in single-pointing using configurations C43-4, C43-1 and the ACA that, in band 6, provide a resolution of 0.4 (corresponding to about 2500 AU at a distance of 7 kpc) and a largest recoverable scale of about 30.7 The required 0.1 mJy continuum sensitivity is reached in 3.6 min in C43-4 and 2 min in C43-1. Fig. 2 shows that the noise level allows a profile analysis even for our short integration and weaker sources. Our setup optimizes the scientific return in both continuum and lines.

3 Scheduling feasibility

The LST range of our sources is fully compatible with accessible ranges in best observing conditions for both C43-1 and C43-4. The RA distribution of our sources has a peak around 16-17 h. The

ALMA Helpdesk (ticket # 12729) confirmed that sources can be observed in an hour angle range of ± 3 hours, so that our 16-17 h RA sources peak can be effectively spread over a wider LST range. Thus, we do not exceed the time limit per LST interval for large programs, and our program poses no scheduling criticality for both requested configurations. See our website¹ for more details.

4 Data products

It is our goal to provide Data Products (DP) to the community that do justice to the enormous legacy value of the project. DPs, consisting of a Compact Source Catalog plus fully reduced and calibrated (combined over all configurations) continuum maps and spectral cubes for all lines detected, will be accompanied by appropriate quality explanatory notes also describing the product generation flow. For line analysis, we want to use the ESO-supported ALMA extension software XCLASS 2 (PI Schilke) developed by us, which will provide line identification and a first LTE excitation analysis. Data reduction (array combination and analysis) on such a large data set has not been done before for ALMA data. The methods and scripts developed within the project will be released with the data products through the ARC nodes. Computing and storage resources are estimated \sim 30–40 TB including raw data, intermediate and final products, and can easily be managed with existing resources in Data Processing Nodes (DPNs, see Fig. 3). DPs will be made available for science exploitation to the Community within a year after final data delivery, via the VO-compatible VIALACTEA knowledge-base that will be released in May 2018 (http://vialactea.iaps.inaf.it, PI Molinari) and that will provide access to all the major continuum and spectroscopic Galactic Plane surveys from the near-IR to the radio, with 3D visualization capabilities, multi-layer overlays with catalogs of compact and extended structures and SED model fitting.

5 Management plan

5.1 Consortium Structure

The end-to-end implementation of this project will go in uncharted territory for ALMA. The ALMAGAL Team (Fig. 3) is engineered ensuring that (i) critical work packages (WPs) will be identified and properly staffed, (ii) the interfaces among WPs will be efficiently designed, and (iii) flexibility and redundancy will be built in the system to avoid single-point failures.

The Steering Group (SG) consists of the Co-PIs, has bi-weekly videocons and (i) defines and monitors project schedule, deliverables and milestones, and (ii) identifies critical areas implementing appropriate recovery measures. An Extended SG (ESG) augmented with Science Working Group (SWG) and DPNs leads, (iii) designs a Science Exploitation Plan with a backbone set of top-level papers and an Early Science Plan and the procedures by which SWG members can propose science projects, (iv) coordinates follow-up studies with ALMA and other facilities, (v) defines the structure and contents of the ALMAGAL DPs, (vi) promotes initiatives to create a lively and productive Team working environment and solve controversies,

Figure 3: ALMAGAL OrgChart.

and (vii) provides the liaison with ALMA-IMF and other relevant projects.

The <u>Technical Working Group (TWG)</u> is responsible for the detail design, implementation and maintenance of the ALMAGAL data reduction pipeline, as well as of the generation of the ALMAGAL DPs. The TWG Lead reports bi-weekly to the SG.

The Science Working Groups (SWG) implement the Science Exploitation Plan and collect inputs from ALMAGAL members for its continuous update and maintenance. All Co-Is will be members

²https://xclass.astro.uni-koeln.de/

of at least one SWG. Besides world-class expertise in interferometric techniques, including scientist from ARC nodes, the proposing team has consolidated and proven capabilities in organizing and managing large photometric and spectroscopic survey projects from ground and space, and in delivering top-notch science and data products as well as automatic data analysis tools (Molinari Hi-GAL, Bergin HEXOS, Beuther THOR/CORE, Schilke XCLASS). Astrochemists and theorists in the team will provide customised numerical simulations to interpret the data in the framework of modern star formation theories. We plan yearly Consortium meetings. Gender balance and responsibility assignments to young researchers will be our guiding principles throughout the project. We currently have a 50/50 gender balance in the SWG Leads, and around 50% non-staff in SWG & TechWG leads.

5.2 Science Management

The SWG Leads will make sure that all inputs and contributions from SWGs members are properly acquired, discussed and coordinated. While the science activity will be driven by SWG members, the SG(+ExtSG) will ensure that every group/individual is fairly treated in terms of work precedence and paper authorship, commensurate to the amount of effort devoted into the project; groups and regional balance will also be taken into account. Should conflicts arise, they will be brought to the SWGs Leads and eventually to the ExtSG that will take all necessary initiatives to come to a definitive, fair and binding decision. The ALMAGAL results will be disseminated via journal articles, conference talks and public outreach. We also envision a workshop on the results for the Community.

5.3 Data Processing Plan

The ALMAGAL Pipeline (**AGP**) includes CASA data reduction and the product generation activities and will be distributed in five DPNs (fig. 3) with appropriate computing and storage resources. Each DPN will be equipped with an identical complement of scripts and SW tools maintained under configuration control in a central repository, providing a distributed infrastructure with high throughput and adequate redundancy. The AGP flow consists of (i) distribution of calibrated visibilities among the DPN and generation of quick-look CLEANed maps; (ii) creation of enhanced continuum and line images, using self-cal etc. of each configuration as the data come in, (iii) generation of early DPs (compact source catalogs, line lists) for rapid science exploitation, (iv) generation of final images, source catalogs, line lists, by combining all configurations, for public release.

6 References

[1] Beltrán+ 2016, ARA&A 24, 6; [2] Beuther+ 2007, PP V, 165; [3] Beuther+ 2015, A&A 581, 119; [4] Bolatto+ 2013, Nature 499, 450; [5] Bonnell+ 2006, MNRAS 370, 488; [6] Brogan+ 2016, ApJ 832, 187; [7] Cesaroni+ 2015, A&A 579, 71; [8] Cesaroni+ 2017, A&A 602, 59; [9] Csengeri+ 2017, A&A 600, 10; [10] Commerçon+, ApJ 742, L9; [11] Hennebelle 2018, A&A 611, 24; [12] Ginsburg+ 2016, A&A 586, 50; [13] Glenn+ 2010, MNRAS 409, 109 [14] He+ 2015, MNRAS 450, 1926; [15] Kauffmann+ 2010, ApJ 723, L7; [16] Klaassen+ 2012, A&A 538, 140; [17] Könyves+ 2010, A&A 518, 106; [18] Krumholz+ 2014, PP VI, 243; [19] Krumholz+ 2009, Science 323, 754; [20] Lada+ 2003, ARA&A 41, 57; [21] McKee+ 2003, ApJ 585, 850; [22] Molinari+ 2008, A&A 481, 345; [23] Molinari+ 2010, A&A 518, L100; [24] Molinari+ 2016, A&A 591, 149; [25] Molinari+ 2016, ApJL 826, 8; [26] Peretto+ 2013, A&A 555, 112; [27] Purcell+ 2013, ApJS 205, 1; [28] Russeil+ 2011, A&A 526, 151; [29] Rygl+ 2013, A&A 549, 5; [30] Schilke 2016, 6th Zermatt Symp., arXiv:1604.01156; [31] Tan+ 2014, PP VI, 149; [32] Wu+ 2003, ApJ 592, 79; [33] Zhang+ 2015, ApJ 804, 141; [34] Zinnecker+ 2007, ARA&A 45, 481; [35] Elia+ 2017, MNRAS 471, 100; [36] Magnum+ 1993, ApJS 89, 12; [37] Bonnell+ 2007, PP V, 149; [38] Smith+ 2009, MNRAS 396, 830; [39] Adams 2010, ARA&A 48, 47; [40] Cyganowski+ 2014, ApJ 796, L2; [41] Motte+ 2018, Nature Astr., arXiv:1804.02392; [42] Beuther+ 2017, MmSAI 88, 584; [43] Beuther+ 2013, A&A 553, 115; [44] Jijina+ 1996, ApJ 462, 864; [45] Yorke+ 2002, ApJ 569, 846; [46] Gong+ 2009, ApJ 699, 230; [47] Lumsden+ 2013, ApJS 208, 11; [48] Lee+ 2016, A&A 591, 30;

SG:1 of 6 High-mass stars 0 cluster 1 Band 6

ionoo Cool Doromotoro		

Science Goal Parameters										
Ang.Res.	LAS	Requested RMS	RMS Band	width	Rep.Freq.	C	Cont. RMS	Cont. Bandwidth	Poln.Prod.	Non-standard mode
0.4000"	30.0"	100 μJy, 16.1 mK	5158.537 km/s,	3.7 GHz 2	217.925000 GHz	95.667	7 μJy, 15.4 mK	3.750 GHz	XX,YY	No
Jse of 12m Array (43 antennas)										
t_total(all configs)	t_sci	ence(C43-4) t_total(C43-1)	Imaged area	#12m pointing	g 12m Mosai	c spacing	HPBW	t_per_point	Data Vol	Avg. Data Rate

		_ ` '		1 0	1 0				v	
4.7 h	2.0 h	1.2 h	8.9 "	44 0		26.7 "	181.1 s	557.3 GB	40.1 MB/s	
Use of ACA 7m Array (1	0 antennas) and TP Arr	ay								

t_total(ACA)	t_total(7m)	t_total(TP)	Imaged area	#7m pointing	7m Mosaic spacing	HPBW	t_per_point	Data Vol	Avg. Data Rate
8.3 h	8.3 h	0.0 h	15.3 "	44	offset	45.8 "	422.7 s	21.8 GB	0.9 MB/s

Spectral Setup : Spectral Line

BB	Center Freq Rest GHz	spw name	Eff #Ch p.p.	Bandwidth	Resolution	Vel. Bandwidth	Vel. Res.	Res. El. per FWHM
1	217.925000	Band 1	3840	1875.00 MHz	0.977 MHz	2579.3 km/s	1.343 km/s	1
2	220.000000	Band 2	3840	1875.00 MHz	0.977 MHz	2554.9 km/s	1.331 km/s	1
3	218.300000	H2CO lines	3840	468.75 MHz	244.141 kHz	643.7 km/s	0.335 km/s	3
4	220.600000	13CO and CH3CN	3840	468.75 MHz	244.141 kHz	637.0 km/s	0.332 km/s	3

44 Targets

No.	Target	Ra,Dec (ICRS)	V,def,frameORz
1	1-62789	18:16:33, -16:51:21	1.00 km/s,lsrk,RADIO
2	2-79018	18:23:33, -13:49:54	1.00 km/s,lsrk,RADIO
3	3-68558	18:18:49, -15:49:06	1.00 km/s,lsrk,RADIO
4	4-66261	18:17:51, -16:13:47	1.00 km/s,lsrk,RADIO
5	5-78953	18:23:22, -13:49:34	1.00 km/s,lsrk,RADIO
6	6-75065	18:21:36, -14:24:35	1.00 km/s,lsrk,RADIO
7	7-G015.1288-00.6	18:20:34, -16:06:28	1.00 km/s,lsrk,RADIO
8	8-G010.3208-00.1	18:09:01, -20:05:08	1.00 km/s,lsrk,RADIO
9	9-65288	18:17:52, -16:27:50	1.00 km/s,lsrk,RADIO
10	10-G013.6562-00	18:17:24, -17:22:14	1.00 km/s,lsrk,RADIO
11	11-G014.6087+00	18:17:02, -16:14:28	1.00 km/s,lsrk,RADIO
12	12-66149	18:18:03, -16:17:09	1.00 km/s,lsrk,RADIO
13	13-73047	18:22:23, -14:59:28	1.00 km/s,lsrk,RADIO
14	14-G012.7879-00	18:14:06, -17:56:06	1.00 km/s,lsrk,RADIO
15	15-63723	18:16:58, -16:42:14	1.00 km/s,lsrk,RADIO
16	16-70080	18:20:23, -15:37:44	1.00 km/s,lsrk,RADIO
17	17-62842	18:16:24, -16:49:52	1.00 km/s,lsrk,RADIO
18	18-73276	18:21:17, -14:48:00	1.00 km/s,lsrk,RADIO
19	19-67795	18:17:39, -15:49:03	1.00 km/s,lsrk,RADIO
20	20-G013.3310-00	18:14:41, -17:23:27	1.00 km/s,lsrk,RADIO
21	21-64410	18:17:16, -16:34:33	1.00 km/s,lsrk,RADIO
22	22-65985	18:17:10, -16:12:39	1.00 km/s,lsrk,RADIO
23	23-G012.8909+00	18:11:51, -17:31:30	1.00 km/s,lsrk,RADIO
24	24-71424	18:19:32, -15:05:34	1.00 km/s,lsrk,RADIO
25	25-65249	18:17:22, -16:24:57	1.00 km/s,lsrk,RADIO
26	26-66010	18:17:12, -16:12:36	1.00 km/s,lsrk,RADIO
27	27-63364	18:18:13, -16:57:22	1.00 km/s,lsrk,RADIO
28	28-64993	18:17:08, -16:26:13	1.00 km/s,lsrk,RADIO
29	29-G012.9090-00	18:14:39, -17:52:02	1.00 km/s,lsrk,RADIO
30	30-67905	18:18:27, -15:53:45	1.00 km/s,lsrk,RADIO
31	31-65040	18:17:40, -16:29:57	1.00 km/s,lsrk,RADIO
32	32-G016.9270+00	18:18:08, -13:45:07	1.00 km/s,lsrk,RADIO
33	33-G017.6380+00	18:22:26, -13:30:12	1.00 km/s,lsrk,RADIO
34	34-68643	18:19:51, -15:56:10	1.00 km/s,lsrk,RADIO
35	35-74335	18:21:15, -14:33:02	1.00 km/s,lsrk,RADIO
36	36-75426	18:22:41, -14:27:40	1.00 km/s,lsrk,RADIO
37	37-78999	18:23:27, -13:49:30	1.00 km/s,lsrk,RADIO
38	38-72942	18:22:19, -15:00:17	1.00 km/s,lsrk,RADIO
39	39-65799	18:18:18, -16:23:17	1.00 km/s,lsrk,RADIO
40	40-G010.8856+00	18:09:07, -19:27:24	1.00 km/s,lsrk,RADIO
41	41-63437	18:18:03, -16:54:52	1.00 km/s,lsrk,RADIO
42	42-69408	18:19:02, -15:39:36	1.00 km/s,lsrk,RADIO
43	43-G014.9958-00	18:20:19, -16:13:29	1.00 km/s,lsrk,RADIO
11	44-73706	18.22.05 -14.48.46	1 00 km/s lsrk RADIO

Expected Source Properties

	Peak Flux	SNR	Linewidth	RMS (over 1/3 linewidth)	linewidth / bandwidth used for sensitivity	Pol.	Pol. SNR
Line	1.00 mJy	0.1	1 km/s	11.9 mJy, 1.9 K	0.0002	0.0%	0.0
Continuum	1.00 mJy	10.5				0.0%	0.0
Dynamic rang	e (cont flux/li	ne rms): 0.1					

1 Tuning

Tuning	Target	Rep. Freq. Sky GHz	RMS (Rep. Freq.)	RMS Achieved
1	1,2,3,4,5,6,7,8,9,1	217.924273	95.73 μJy, 15.4 mK	95.73 uJy - 96.11 uJy

Note that one or more of the S/N estimates are < 3. Please double-check the RMS and/or line fluxes entered and/or address the issue below. Note that the bandwidth used for sensitivity is larger than 1/3 of the linewidth.

The S/N achieved for a resolution element that allows the line to be resolved will be lower than that reported.

- Justification for requested RMS and resulting S/N (and for spectral lines the bandwidth selected) for the sensitivity calculation.

A sensitivity of 100 µJy at 1.37 mm wavelength delivers a mass sensitivity of nearly 0.1 Msun using dust opacities form Ossenkopf & Henning with beta=2 and dust temperature of 17 K at 7 kpc, the maximum distance to our sources. This would allow to safely detect 0.3 M_sun sources, while our total source masses have a cutoff of 500 M_sun, so even with severe fragmentation we would discover all the fragments. With this, we will be able to sample the peak of a typical CMF in a low/intermediate-mass SF region like Aquila. Although in some cases we may be limited by the dynamic range, simulations are very successful in recovering all scales, as shown in Fig.2 in the proposal. Also, we found from past experience that self-cal can improve the dynamic range considerably.

For the lines maps, a spectral resolution of 0.5 km/s and a spatial resolution of 0.4" give a 1 sigma rms of 1.4 K, which is as shown in Fig. 2, is sufficient to analyze the line emission even in weaker cores, and could be further enhanced by spectral smoothing. Fig. 2 is based on real ALMA observations of a high-mass star-forming region. We will not be able to analyze the lines of all sources in that manner, but we expect that we will be able to do the analysis in enough sources to be worthwhile, and use 13CO in the ones weaker in H2CO or CH3CN.

-Justification of the chosen angular resolution and largest angular scale for the source(s) in this Science Goal.

We would like to get a resolution of about 0.4" to achieve a resolution of at least 2500 AU at all distances considered. This would allow to resolve the clusters sufficiently to determine the CMF, find large toroid-like rotating structures or circumbinary disks, and detect disk candidates for further studies. The largest scale is given by the desire to model the density and temperature structure on the clump scale, and to fully characterize the clumpßlevel

The configuration proposed by the OT for these requirements (C4-C1-ACA) has been verified to provide enough time for large programs to host our observations, if the sources can be spread out in an interval of +/- 3 h, as stated by the knowledge base, and verified by a helpdesk ticket. Thus, we do not exceed the time limit per LST interval for large programs, and our program poses no criticality in terms of scheduling feasibility for both requested configurations.

Correlator Comments

Note that the spectral resolution is larger than 1/3 of the the spectral line width and that your line may not be resolved.

- Justification of the correlator set-up with particular reference to the number of spectral resolution elements per line width.

SG : 1 of 6 High-mass stars 0 cluster 2 Band 6

Science Goal Parame	eters										
Ang.Res.	LAS	Requ	lested RMS	RMS Band	width	Rep.Freq.	С	ont. RMS	Cont. Bandwidth	Poln.Prod.	Non-standard mode
0.4000"	30.0"	100 µ	ıJy, 16.1 mK	5158.494 km/s	5158.494 km/s, 3.7 GHz		97.088 μJy, 15.6 mK		3.750 GHz	XX,YY	No
Jse of 12m Array (43 antennas)											
t total(all configs)	t sc	ience(C43-4)	t total(C43-1)	Imaged area	#12m point	ing 12m Mosa	c spacing	HPBW	t per point	Data Vol	Avg. Data Rate

t_total(all conligs)		(_total(0+0 1)	intaged area	#izin pointing	12m Wosuic Spacing	TH DVV	t_pei_point	Data VOI	Avg. Data Nate	1
8.3 h	3.6 h	2.1 h	8.9 "	78	offset	26.7 "	180.9 s	956.8 GB	39.5 MB/s	Ĺ
Use of ACA 7m Array (1	0 antennas) and TP Arra	ay								

t_total(ACA)	t_total(7m)	t_total(TP)	Imaged area	#7m pointing	7m Mosaic spacing	HPBW	t_per_point	Data Vol	Avg. Data Rate
14.7 h	14.7 h	0.0 h	15.3 "	78	offset	45.8 "	422.0 s	37.5 GB	0.9 MB/s

Spectral Setup : Spectral Line

BB	Center Freq Rest GHz	spw name	Eff #Ch p.p.	Bandwidth	Resolution	Vel. Bandwidth	Vel. Res.	Res. El. per FWHM
1	217.925000	Band 1	3840	1875.00 MHz	0.977 MHz	2579.2 km/s	1.343 km/s	1
2	220.000000	Band 2	3840	1875.00 MHz	0.977 MHz	2554.9 km/s	1.331 km/s	1
3	218.300000	H2CO lines	3840	468.75 MHz	244.141 kHz	643.7 km/s	0.335 km/s	3
4	220.600000	13CO and CH3CN	3840	468.75 MHz	244.141 kHz	637.0 km/s	0.332 km/s	3

	4 220.	1000000	.300 and Chi3Ch 304
78 T	argets		
No	Target	Do Doo (ICDS)	V dof frame OB 7
110.	Target	Ra, Dec (ICRS)	
1	1-G027.7954-00.2	18:43:02, -04:41:48	1.00 km/s,ISFK,RADIO
2	2-G018.3706-00.3	18:25:48, -13:06:29	1.00 km/s,Isrk,RADIO
3	3-85482	18:25:23, -12:24:11	1.00 km/s,isrk,RADIO
4	4-G019.9386-00.2	18:28:10, -11:38:21	1.00 km/s,Isrk,RADIO
5	5-98539	18:31:44, -09:22:12	1.00 km/s,lsrk,RADIO
6	6-89119	18:28:46, -11:51:54	1.00 km/s,lsrk,RADIO
7	7-81635	18:25:00, -13:15:35	1.00 km/s,lsrk,RADIO
8	8-123353	18:41:20, -04:44:33	1.00 km/s,lsrk,RADIO
9	9-82665	18:25:22, -13:04:24	1.00 km/s,lsrk,RADIO
10	10-123154	18:41:16, -04:47:21	1.00 km/s,lsrk,RADIO
11	11-88380	18:27:42, -11:57:03	1.00 km/s,lsrk,RADIO
12	12-82445	18:25:41, -13:10:16	1.00 km/s,lsrk,RADIO
13	13-85234	18:27:42, -12:44:51	1.00 km/s,lsrk,RADIO
14	14-84809	18:27:02, -12:44:37	1.00 km/s,lsrk,RADIO
15	15-123725	18:41:26, -04:39:01	1.00 km/s,lsrk,RADIO
16	16-121120	18:39:38, -05:07:17	1.00 km/s,lsrk,RADIO
17	17-124569	18:42:17, -04:28:53	1.00 km/s,lsrk,RADIO
18	18-91185	18:28:52, -11:09:59	1.00 km/s,lsrk,RADIO
19	19-94993	18:32:10, -10:28:41	1.00 km/s,lsrk,RADIO
20	20-97293	18:30:34, -09:34:46	1.00 km/s,lsrk,RADIO
21	21-82207	18:25:0613:08:52	1.00 km/s.lsrk.RADIO
22	22-99130	18:35:34, -09:43:01	1.00 km/s.lsrk.RADIO
23	23-96209	18:30:1709:51:32	1.00 km/s.lsrk.RADIO
24	24-96689	18:30:20 -09:43:42	1.00 km/s lsrk RADIO
25	25-98623	18:30:39, -09:12:45	1.00 km/s.lsrk.RADIO
26	26-97468	18:34:28 -10:01:57	1.00 km/s lsrk RADIO
27	27-119700	18:39:55 -05:34:59	1 00 km/s lsrk RADIO
28	28-85129	18:27:07 -12:41:35	1.00 km/s lsrk RADIO
20	29-84612	18:26:15 -12:41:34	1 00 km/s lsrk RADIO
20	20.07250	18:22:24 -00:55:36	1.00 km/s lsrk PADIO
31	31_G019 8922+00	18:26:57 -11:32:09	1.00 km/s lsrk RADIO
32	22-90652	19:27:50 -11:32:53	1.00 km/s lsrk PADIO
22	32-03033	18:20:52 -05:22:25	1.00 km/s lsrk PADIO
24	34-95069	19:27:45 -12:26:06	1.00 km/s lsrk RADIO
25	35-02202	18:20:11 -11:00:57	1.00 km/s lsrk PADIO
26	26 12220E	10.30.11, -11.00.37	1.00 km/s lork BADIO
27	27 120224	10:40.27, -04.32.00	1.00 km/s lork BADIO
20	20 122261	10.33.23, -03.13.40	1.00 km/s lork BADIO
20	20 1222301	10:42:24, -05:07:24	1.00 km/s,ISIK,RADIO
39	39-123371	10:20:07 11:20:41	1.00 km/s,ISIK,RADIO
40	40-89485	10.20.07, -11.39.41	1.00 km/s,Isik,RADIO
41	41-82529	10.20.30, -13.10.30	1.00 km/s,ISIK,RADIO
42	42-124839	18:42:06, -04:22:20	1.00 km/s,Isrk,RADIO
43	43-100244	18:33:49, -09:13:05	1.00 km/s,isrk,RADIO
44	44-120828	18:40:46, -05:20:58	1.00 km/s,Isrk,RADIO
45	45-83968	18:25:10, -12:42:23	1.00 km/s,Isrk,RADIO
46	40-99410	18:32:24, -09:14:30	1.00 km/s,lsrk,RADIO
47	47-86859	18:26:34, -12:14:49	1.00 km/s,lsrk,RADIO
48	48-91656	18:29:05, -11:03:25	1.00 km/s,lsrk,RADIO
49	49-92527	18:29:16, -10:52:10	1.00 km/s,lsrk,RADIO
50	50-81249	18:24:57, -13:20:28	1.00 km/s,lsrk,RADIO
51	51-99811	18:34:09, -09:22:11	1.00 km/s,lsrk,RADIO
52	52-92304	18:29:59, -11:00:23	1.00 km/s,lsrk,RADIO
53	53-124103	18:41:48, -04:34:52	1.00 km/s,lsrk,RADIO
54	54-84929	18:27:44, -12:48:41	1.00 km/s,lsrk,RADIO
55	55-119364	18:40:57, -05:48:11	1.00 km/s,lsrk,RADIO
56	56-84174	18:26:24, -12:49:06	1.00 km/s,lsrk,RADIO
57	57-99085	18:30:56, -09:08:09	1.00 km/s,lsrk,RADIO
58	58-87685	18:25:54, -11:54:44	1.00 km/s,lsrk,RADIO
59	59-100662	18:34:31, -09:13:55	1.00 km/s,lsrk,RADIO
60	60-99331	18:32:59, -09:19:58	1.00 km/s,lsrk,RADIO
_			

Expected Source Properties

	Peak Flux	SNR	Linewidth	RMS (over 1/3 linewidth)	linewidth / bandwidth used for sensitivity	Pol.	Pol. SNR			
Line	1.00 mJy	0.1	1 km/s	12.08 mJy, 1.9 K	0.0002	0.0%	0.0			
Continuum	1.00 mJy	10.3				0.0%	0.0			
Dynamic range	Dynamic range (cont flux/line rms): 0.1									
1 Tuning										

Tuning	Target	Rep. Freq. Sky GHz	RMS (Rep. Freq.)	RMS Achieved
1	1,2,3,4,5,6,7,8,9,1	217.924273	96.1 µJy, 15.5 mK	96.10 uJy - 96.48 uJy

No.	Target	Ra,Dec (ICRS)	V,def,frameORz
61	61-89442	18:28:55, -11:46:55	1.00 km/s,lsrk,RADIO
62	62-86213	18:26:48, -12:26:23	1.00 km/s,lsrk,RADIO
63	63-98101	18:31:40, -09:28:48	1.00 km/s,lsrk,RADIO
64	64-119012	18:38:40, -05:35:03	1.00 km/s,lsrk,RADIO
65	65-G019.9224-00	18:28:18, -11:40:36	1.00 km/s,lsrk,RADIO
66	66-124803	18:42:38, -04:27:11	1.00 km/s,lsrk,RADIO
67	67-120736	18:39:49, -05:15:25	1.00 km/s,lsrk,RADIO
68	68-121327	18:42:45, -05:27:31	1.00 km/s,lsrk,RADIO
69	69-120995	18:41:39, -05:24:56	1.00 km/s,lsrk,RADIO
70	70-124513	18:41:25, -04:23:34	1.00 km/s,lsrk,RADIO
71	71-123751	18:41:18, -04:37:29	1.00 km/s,lsrk,RADIO
72	72-88182	18:27:04, -11:54:44	1.00 km/s,lsrk,RADIO
73	73-119213	18:39:37, -05:39:37	1.00 km/s,lsrk,RADIO
74	74-89378	18:29:14, -11:50:24	1.00 km/s,lsrk,RADIO
75	75-99822	18:34:33, -09:25:05	1.00 km/s,lsrk,RADIO
76	76-124229	18:41:31, -04:29:57	1.00 km/s,lsrk,RADIO
77	77-124177	18:41:49, -04:33:17	1.00 km/s,lsrk,RADIO
78	78-118969	18:38:30, -05:34:34	1.00 km/s,lsrk,RADIO

Note that one or more of the S/N estimates are < 3. Please double-check the RMS and/or line fluxes entered and/or address the issue below. Note that the bandwidth used for sensitivity is larger than 1/3 of the linewidth.

The S/N achieved for a resolution element that allows the line to be resolved will be lower than that reported.

- Justification for requested RMS and resulting S/N (and for spectral lines the bandwidth selected) for the sensitivity calculation.

A sensitivity of 100 µJy at 1.37 mm wavelength delivers a mass sensitivity of nearly 0.1 Msun using dust opacities form Ossenkopf & Henning with beta=2 and dust temperature of 17 K at 7 kpc, the maximum distance to our sources. This would allow to safely detect 0.3 M_sun sources, while our total source masses have a cutoff of 500 M_sun, so even with severe fragmentation we would discover all the fragments. With this, we will be able to sample the peak of a typical CMF in a low/intermediate-mass SF region like Aquila. Although in some cases we may be limited by the dynamic range, simulations are very successful in recovering all scales, as shown in Fig.2 in the proposal. Also, we found from past experience that self-cal can improve the dynamic range considerably.

For the lines maps, a spectral resolution of 0.5 km/s and a spatial resolution of 0.4" give a 1 sigma rms of 1.4 K, which is as shown in Fig. 2, is sufficient to analyze the line emission even in weaker cores, and could be further enhanced by spectral smoothing. Fig. 2 is based on real ALMA observations of a high-mass star-forming region. We will not be able to analyze the lines of all sources in that manner, but we expect that we will be able to do the analysis in enough sources to be worthwhile, and use 13CO in the ones weaker in H2CO or CH3CN.

-Justification of the chosen angular resolution and largest angular scale for the source(s) in this Science Goal.

We would like to get a resolution of about 0.4" to achieve a resolution of at least 2500 AU at all distances considered. This would allow to resolve the clusters sufficiently to determine the CMF, find large toroid-like rotating structures or circumbinary disks, and detect disk candidates for further studies. The largest scale is given by the desire to model the density and temperature structure on the clump scale, and to fully characterize the clumpßlevel

The configuration proposed by the OT for these requirements (C4-C1-ACA) has been verified to provide enough time for large programs to host our observations, if the sources can be spread out in an interval of +/- 3 h, as stated by the knowledge base, and verified by a helpdesk ticket. Thus, we do not exceed the time limit per LST interval for large programs, and our program poses no criticality in terms of scheduling feasibility for both requested configurations.

Correlator Comments

Note that the spectral resolution is larger than 1/3 of the the spectral line width and that your line may not be resolved.

- Justification of the correlator set-up with particular reference to the number of spectral resolution elements per line width.

SG:1of 6 High-mass stars 0 cluster 3 Band 6

Science Goal Parameters												
Ang.Res. LAS Requested RMS RMS Bandwidth Rep.Freq. Cont. RMS Cont. Bandwidth Poln.Prod. Non-standard											Non-standard mode	
0.4000" 30.0" 100 μЈу, 16.1 mK 5158.713 km/s, 3.7 GHz 217.925000 GHz 98.579 μЈу, 15.9 mK 3.750 GHz XX,YY No												
Use of 12m Array (43	antennas)											
t_total(all configs)	t_sci	ience(C43-4)	t_total(C43-1)	Imaged area	#12m poir	nting	12m Mosai	c spacing	HPBW	t_per_point	Data Vol	Avg. Data Rate
14.4 h		6.3 h	3.6 h	8.9 "	129		offs	et	26.7 "	180.4 s	1625.4 GB	39.1 MB/s

Use of ACA 7m Array (10 antennas) and TP Array

t_total(ACA)	t_total(7m)	t_total(TP)	Imaged area	#7m pointing	7m Mosaic spacing	HPBW	t_per_point	Data Vol	Avg. Data Rate
25.5 h	25.5 h	0.0 h	15.3 "	129	offset	45.8 "	421.3 s	63.7 GB	0.9 MB/s

Spectral Setup : Spectral Line

BB	Center Freq Rest GHz	spw name	Eff #Ch p.p.	Bandwidth	Resolution	Vel. Bandwidth	Vel. Res.	Res. El. per FWHM
1	217.925000	Band 1	3840	1875.00 MHz	0.977 MHz	2579.4 km/s	1.343 km/s	1
2	220.000000	Band 2	3840	1875.00 MHz	0.977 MHz	2555.0 km/s	1.331 km/s	1
3	218.300000	H2CO lines	3840	468.75 MHz	244.141 kHz	643.7 km/s	0.335 km/s	3
4	220.600000	13CO and CH3CN	3840	468.75 MHz	244.141 kHz	637.0 km/s	0.332 km/s	3

129 Targets No. Ta

125	Targets		
No.	Target	Ra,Dec (ICRS)	V,def,frameORz
1	1-829328	16:36:2847:41:46	1.00 km/s.lsrk.RADIO
2	2-834066	16:38:0846:47:45	1.00 km/s.lsrk.RADIO
3	3-824994	16:27:5247:17:59	1.00 km/s.lsrk.RADIO
4	4-847926	16:51:18, -45:11:31	1.00 km/s.lsrk.RADIO
5	5-844608	16:47:0345:21:22	1.00 km/s.lsrk.RADIO
6	6-816070	16:24:16, -49:37:16	1.00 km/s.lsrk.RADIO
7	7-849833	16:51:58, -44:45:14	1.00 km/s.lsrk.RADIO
8	8-842092	16:46:36, -45:56:07	1.00 km/s.lsrk.BADIO
9	9-848944	16:54:11 -45:18:11	1 00 km/s lsrk RADIO
10	10-817925	16:23:44, -48:53:44	1.00 km/s.lsrk.RADIO
11	11-826927	16:34:12, -47:53:07	1.00 km/s.lsrk.RADIO
12	12-844742	16:49:0845:37:59	1.00 km/s.lsrk.BADIO
13	13-840049	16:40:45, -45:38:28	1.00 km/s.lsrk.RADIO
14	14-815466	16:23:17, -49:41:08	1.00 km/s.lsrk.RADIO
15	15-821687	16:30:58 -48:43:52	1 00 km/s lsrk RADIO
16	16-832986	16:37:21, -46:56:01	1.00 km/s.lsrk.RADIO
17	17-839678	16:40:13 -45:38:29	1 00 km/s lsrk RADIO
18	18-833177	16:38:52 -47:07:18	1 00 km/s lsrk BADIO
19	19-822181	16:33:43 -49:00:43	1 00 km/s lsrk RADIO
20	20-820769	16:28:10 -48:34:32	1 00 km/s lsrk RADIO
21	21-833781	16:40:52 -47:16:52	1 00 km/s lsrk BADIO
22	22-840570	16:44:19 -46:02:31	1 00 km/s lsrk RADIO
23	23-821659	16:30:35 -48:40:47	1 00 km/s lsrk BADIO
24	24-851044	16:52:37 -44:28:09	1 00 km/s lsrk BADIO
25	25-850946	16:52:23 -44:27:55	1.00 km/s lsrk BADIO
26	26-843968	16:43:38 -44:57:41	1 00 km/s lsrk BADIO
27	27-850088	16:52:11 -44:42:08	1 00 km/s lsrk BADIO
28	28-842823	16:45:0545:30:14	1.00 km/s.lsrk.RADIO
29	29-833734	16:39:57 -47:09:28	1 00 km/s lsrk BADIO
30	30-829066	16:35:14 -47:34:30	1 00 km/s lsrk BADIO
31	31-830599	16:36:30, -47:23:37	1.00 km/s.lsrk.RADIO
32	32-849780	16:49:36, -44:24:59	1.00 km/s.lsrk.RADIO
33	33-849495	16:51:47 -44:48:48	1 00 km/s lsrk BADIO
34	34-G337.0963-00	16:39:57, -48:02:48	1.00 km/s.lsrk.RADIO
35	35-G341.2182-00	16:52:17, -44:26:53	1.00 km/s.lsrk.RADIO
36	36-837491	16:41:15 -46:24:43	1 00 km/s lsrk RADIO
37	37-836078	16:42:12, -46:54:43	1.00 km/s.lsrk.RADIO
38	38-848491	16:48:29, -44:36:09	1.00 km/s.lsrk.RADIO
39	39-829764	16:36:00 -47:30:56	1 00 km/s lsrk RADIO
40	40-G339.6816-01	16:51:05, -46:15:52	1.00 km/s.lsrk.RADIO
41	41-839769	16:45:0946:22:19	1.00 km/s.lsrk.RADIO
42	42-850981	16:52:32, -44:28:38	1.00 km/s.lsrk.BADIO
43	43-817911	16:23:49, -48:54:49	1.00 km/s.lsrk.RADIO
44	44-835278	16:39:43, -46:45:22	1.00 km/s.lsrk.RADIO
45	45-846728	16:48:53, -45:10:20	1.00 km/s.lsrk.RADIO
46	46-826894	16:34:05, -47:52:20	1.00 km/s,lsrk,RADIO
47	47-818034	16:26:25, -49:17:25	1.00 km/s,lsrk.RADIO
48	48-839003	16:40:21, -45:51:07	1.00 km/s.lsrk.RADIO
49	49-830681	16:36:24, -47:21:15	1.00 km/s,lsrk,RADIO
50	50-824798	16:33:01, -48:10:24	1.00 km/s,lsrk.RADIO
51	51-848271	16:48:19, -44:38:35	1.00 km/s.lsrk.RADIO
52	52-828645	16:35:09, -47:39:06	1.00 km/s,lsrk,RADIO
53	53-828821	16:35:06, -47:36:28	1.00 km/s,lsrk.RADIO
54	54-839428	16:40:23, -45:43:43	1.00 km/s.lsrk.RADIO
55	55-840516	16:41:54, -45:41:15	1.00 km/s.lsrk.RADIO
56	56-828032	16:35:27, -47:49:32	1.00 km/s,lsrk,RADIO
57	57-G334.7302+00	16:26:04, -49:08:41	1.00 km/s,lsrk,RADIO
58	58-837611	16:41:06, -46:21:33	1.00 km/s,lsrk.RADIO
59	59-824611	16:30:35, -47:50:32	1.00 km/s,lsrk,RADIO
60	60-G337.1555-00	16:37:49, -47:38:50	1.00 km/s,lsrk,RADIO
10-10-10-10-10-10-10-10-10-10-10-10-10-1			

Expected Source Properties

	Peak Flux	SNR	Linewidth	RMS (over 1/3 linewidth)	linewidth / bandwidth used for sensitivity	Pol.	Pol. SNR			
Line	1.00 mJy	0.1	1 km/s	12.26 mJy, 2 K	0.0002	0.0%	0.0			
Continuum	1.00 mJy	10.1				0.0%	0.0			
Dynamic range	Dynamic range (cont flux/line rms): 0.1									
1 Tuning										

Tuning	Target	Rep. Freq. Sky GHz	RMS (Rep. Freq.)	RMS Achieved
1	1,2,3,4,5,6,7,8,9,1	217.924273	99.01 µJy, 15.9 mK	99.01 uJy - 99.42 uJy

No.	Target	Ra,Dec (ICRS)	V,def,frameORz
61	61-847376	16:50:05, -45:10:54	1.00 km/s,lsrk,RADIO
62	62-831013	16:36:04, -47:12:43	1.00 km/s,lsrk,RADIO
63	63-841437	16:43:43, -45:42:08	1.00 km/s,lsrk,RADIO
64	64-820233	16:29:37, -48:59:01	1.00 km/s,lsrk,RADIO
65	65-834297	16:39:22, -46:55:21	1.00 km/s,lsrk,RADIO
66	66-835833	16:39:30, -46:34:13	1.00 km/s,lsrk,RADIO
67	67-G338.9196+00	16:40:34, -45:42:07	1.00 km/s,lsrk,RADIO
68	68-816655	16:25:23, -49:35:00	1.00 km/s,lsrk,RADIO
69	69-G340.7455-01	16:54:04, -45:18:50	1.00 km/s,lsrk,RADIO
70	70-816113	16:22:57, -49:23:51	1.00 km/s,lsrk,RADIO
71	71-G337.4050-00	16:38:50, -47:28:18	1.00 km/s,lsrk,RADIO
72	72-839411	16:45:35, -46:31:06	1.00 km/s,lsrk,RADIO
73	73-832138	16:37:40, -47:11:02	1.00 km/s,lsrk,RADIO
74	74-815787	16:21:36, -49:18:01	1.00 km/s,lsrk,RADIO
75	75-829483	16:35:34, -47:31:10	1.00 km/s,lsrk,RADIO
76	76-826783	16:33:52, -47:51:37	1.00 km/s,lsrk,RADIO
77	77-847247	16:50:01, -45:12:36	1.00 km/s,lsrk,RADIO
78	78-827709	16:34:11, -47:42:07	1.00 km/s,lsrk,RADIO
79	79-839208	16:44:03, -46:20:50	1.00 km/s,lsrk,RADIO
80	80-842248	16:44:38, -45:35:49	1.00 km/s,lsrk,RADIO
81	81-818686	16:27:26, -49:12:24	1.00 km/s,lsrk,RADIO
82	82-844304	16:49:03, -45:42:27	1.00 km/s,lsrk,RADIO
83	83-827218	16:33:01, -47:38:02	1.00 km/s,lsrk,RADIO
84	84-837688	16:40:54, -46:18:25	1.00 km/s,lsrk,RADIO
85	85-835723	16:39:26, -46:35:29	1.00 km/s,lsrk,RADIO
86	86-G337.3071-00	16:37:22, -47:22:05	1.00 km/s,lsrk,RADIO
87	87-837452	16:42:15, -46:34:19	1.00 km/s,lsrk,RADIO
88	88-845638	16:51:03, -45:43:22	1.00 km/s,lsrk,RADIO
89	89-836457	16:38:09, -46:11:03	1.00 km/s,lsrk,RADIO
90	90-819043	16:28:18, -49:12:57	1.00 km/s,lsrk,RADIO
91	91-G339.6221-00	16:46:05, -45:36:43	1.00 km/s,lsrk,RADIO
92	92-817991	16:26:12, -49:16:09	1.00 km/s,lsrk,RADIO
93	93-848368	16:52:06, -45:10:20	1.00 km/s,Isrk,RADIO
94	94-818250	16:28:57, -49:36:28	1.00 km/s,Isrk,RADIO
95	95-819803	16:29:50, -49:10:46	1.00 km/s,Isrk,RADIO
96	96-837990	16:41:07, -46:15:29	1.00 km/s,Isrk,RADIO
97	97-846909	16:49:43, -45:15:18	1.00 km/s,Isrk,RADIO
98	98-836407	10:40:48, -40:30:32	
99	99-850026	10:51:55, -44:40:59	
100	100-G335.0011-00	16:42:20 47:50:40	1.00 km/s,ISIK,RADIO
101	102-838005	16:42:20, -47.30:40	
102	102-030005	16:33:02 -40.25.29	1 00 km/s lerk PADIO
10/	10/-832316	16:36:35 -/6:58:55	1 00 km/s lerk PADIO
104	105-8/3161	16:47:36 -40.00.00	1 00 km/s lerk DADIO
106	106-838925	16:46:48 -/6:50:32	1 00 km/s lerk RADIO
107	107-847549	16.51.02 -15.15.22	1 00 km/s lerk RADIO
108	108-834656	16:41:22 -47:08:23	1 00 km/s lsrk RADIO
109	109-839462	16:40:14 -45:41:44	1 00 km/s lsrk RADIO
110	110-835584	16:38:45, -46:31:33	1.00 km/s.lsrk.RADIO
111	111-847929	16:51:07, -45:09:52	1.00 km/s.lsrk.RADIO
112	112-837913	16:43:20, -46:37:03	1.00 km/s.lsrk.RADIO
113	113-837441	16:41:05, -46:23:50	1.00 km/s,lsrk.RADIO
114	114-826627	16:31:54, -47:34:55	1.00 km/s.lsrk.RADIO
115	115-830048	16:36:05, -47:27:24	1.00 km/s,lsrk,RADIO
116	116-822214	16:29:16, -48:18:54	1.00 km/s,lsrk,RADIO
117	117-830494	16:36:18, -47:23:20	1.00 km/s,lsrk.RADIO
118	118-817958	16:23:41, -48:52:36	1.00 km/s,lsrk,RADIO
119	119-833276	16:36:05, -46:40:21	1.00 km/s,lsrk,RADIO
120	120-822761	16:29:47, -48:15:50	1.00 km/s.lsrk,RADIO

No.	Target	Ra,Dec (ICRS)	V,def,frameORz
121	121-835436	16:39:58, -46:45:04	1.00 km/s,lsrk,RADIO
122	122-840609	16:42:59, -45:49:44	1.00 km/s,lsrk,RADIO
123	123-G340.0543-00	16:48:13, -45:21:45	1.00 km/s,lsrk,RADIO
124	124-826023	16:33:28, -47:57:58	1.00 km/s,lsrk,RADIO
125	125-846390	16:48:17, -45:09:25	1.00 km/s,lsrk,RADIO
126	126-840415	16:42:49, -45:51:25	1.00 km/s,lsrk,RADIO
127	127-846634	16:49:00, -45:12:33	1.00 km/s,lsrk,RADIO
128	128-815302	16:21:57, -49:31:26	1.00 km/s,lsrk,RADIO
129	129-850568	16:52:33, -44:36:10	1.00 km/s,lsrk,RADIO

Note that one or more of the S/N estimates are < 3. Please double-check the RMS and/or line fluxes entered and/or address the issue below. Note that the bandwidth used for sensitivity is larger than 1/3 of the linewidth.

The S/N achieved for a resolution element that allows the line to be resolved will be lower than that reported.

- Justification for requested RMS and resulting S/N (and for spectral lines the bandwidth selected) for the sensitivity calculation.

A sensitivity of 100 µJy at 1.37 mm wavelength delivers a mass sensitivity of nearly 0.1 Msun using dust opacities form Ossenkopf & Henning with beta=2 and dust temperature of 17 K at 7 kpc, the maximum distance to our sources. This would allow to safely detect 0.3 M_sun sources, while our total source masses have a cutoff of 500 M_sun, so even with severe fragmentation we would discover all the fragments. With this, we will be able to sample the peak of a typical CMF in a low/intermediate-mass SF region like Aquila. Although in some cases we may be limited by the dynamic range, simulations are very successful in recovering all scales, as shown in Fig.2 in the proposal. Also, we found from past experience that self-cal can improve the dynamic range considerably.

For the lines maps, a spectral resolution of 0.5 km/s and a spatial resolution of 0.4" give a 1 sigma rms of 1.4 K, which is as shown in Fig. 2, is sufficient to analyze the line emission even in weaker cores, and could be further enhanced by spectral smoothing. Fig. 2 is based on real ALMA observations of a high-mass star-forming region. We will not be able to analyze the lines of all sources in that manner, but we expect that we will be able to do the analysis in enough sources to be worthwhile, and use 13CO in the ones weaker in H2CO or CH3CN.

-Justification of the chosen angular resolution and largest angular scale for the source(s) in this Science Goal.

We would like to get a resolution of about 0.4" to achieve a resolution of at least 2500 AU at all distances considered. This would allow to resolve the clusters sufficiently to determine the CMF, find large toroid-like rotating structures or circumbinary disks, and detect disk candidates for further studies. The largest scale is given by the desire to model the density and temperature structure on the clump scale, and to fully characterize the clumpßlevel

The configuration proposed by the OT for these requirements (C4-C1-ACA) has been verified to provide enough time for large programs to host our observations, if the sources can be spread out in an interval of +/- 3 h, as stated by the knowledge base, and verified by a helpdesk ticket. Thus, we do not exceed the time limit per LST interval for large programs, and our program poses no criticality in terms of scheduling feasibility for both requested configurations.

Correlator Comments

Note that the spectral resolution is larger than 1/3 of the the spectral line width and that your line may not be resolved.

- Justification of the correlator set-up with particular reference to the number of spectral resolution elements per line width.

SG : 1 of 6 High-mass stars 0 cluster 4 Band 6

cience Goal Parameters											
Ang.Res.	LAS F	equested RMS	RMS Band	lwidth	Rep.Freq.	(Cont. RMS	Cont. Bandwidth	Poln.Prod.	Non-standard mode	
0.4000" 30.0" 100 μJy, 16.1 mK 5158.679 km		5158.679 km/s	, 3.7 GHz	217.925000 GHz	94.23	4 μJy, 15.2 mK	3.750 GHz	XX,YY	No		
Use of 12m Array (43	se of 12m Array (43 antennas)										
t_total(all configs) t_science(C43-4) t_total(C43-1) Imaged area #12m pointing 12m Mosaic spacing HPBW t_per_point Data Vol Avg. Data Rate											
6.6 h	2.8 h	1.7 h	8.9 "	59	offs	set	26.7 "	193.1 s	781.7 GB	40.1 MB/s	

Use of ACA 7m Array (10 antennas) and TP Array

t_total(ACA)	t_total(7m)	t_total(TP)	Imaged area	#7m pointing	7m Mosaic spacing	HPBW	t_per_point	Data Vol	Avg. Data Rate
11.7 h	11.7 h	0.0 h	15.3 "	59	offset	45.8 "	452.7 s	30.6 GB	0.9 MB/s

Spectral Setup : Spectral Line

BB	Center Freq Rest GHz	spw name	Eff #Ch p.p.	Bandwidth	Resolution	Vel. Bandwidth	Vel. Res.	Res. El. per FWHM
1	217.925000	Band 1	3840	1875.00 MHz	0.977 MHz	2579.3 km/s	1.343 km/s	1
2	220.000000	Band 2	3840	1875.00 MHz	0.977 MHz	2555.0 km/s	1.331 km/s	1
3	218.300000	H2CO lines	3840	468.75 MHz	244.141 kHz	643.7 km/s	0.335 km/s	3
4	220.600000	13CO and CH3CN	3840	468.75 MHz	244.141 kHz	637.0 km/s	0.332 km/s	3

59 Targets

No.	Target	Ra,Dec (ICRS)	V,det,frameORz
1	1-859732	17:01:18, -42:49:37	1.00 km/s,lsrk,RADIO
2	2-859149	17:00:31, -42:53:54	1.00 km/s,lsrk,RADIO
3	3-G342.7057+00.1	16:56:02, -43:04:51	1.00 km/s,lsrk,RADIO
4	4-881240	17:20:03, -38:58:29	1.00 km/s,lsrk,RADIO
5	5-867071	17:01:01, -40:27:50	1.00 km/s,lsrk,RADIO
6	6-859271	17:00:18, -42:49:18	1.00 km/s,lsrk,RADIO
7	7-861762	17:03:57, -42:29:27	1.00 km/s,lsrk,RADIO
8	8-874341	17:09:5439:32:17	1.00 km/s.lsrk.RADIO
9	9-860232	17:00:3042:33:02	1.00 km/s.lsrk.RADIO
10	10-877212	17:14:31, -39:14:04	1.00 km/s,lsrk,RADIO
11	11-854214	16:52:3243:23:45	1.00 km/s.lsrk.RADIO
12	12-874429	17:09:4639:29:04	1.00 km/s.lsrk.RADIO
13	13-875896	17:11:31, -39:13:35	1.00 km/s,lsrk,RADIO
14	14-880472	17:14:4538:22:52	1.00 km/s.lsrk.RADIO
15	15-869399	17:06:5940:44:07	1.00 km/s.lsrk.RADIO
16	16-866806	17:03:2340:52:17	1.00 km/s.lsrk.RADIO
17	17-880433	17:19:10, -39:00:24	1.00 km/s.lsrk.RADIO
18	18-865468	17:05:11, -41:29:05	1.00 km/s.lsrk.BADIO
19	19-866406	17:04:48, -41:10:19	1.00 km/s.lsrk.RADIO
20	20-885108	17:17:32, -37:39:31	1.00 km/s.lsrk.RADIO
21	21-852832	16:52:42 -43:53:17	1 00 km/s lsrk BADIO
22	22-852473	16:51:46, -43:52:07	1.00 km/s.lsrk.RADIO
23	23-885094	17:17:3937:40:37	1.00 km/s.lsrk.RADIO
24	24-856381	16:55:12, -43:11:17	1.00 km/s.lsrk.BADIO
25	25-G345.5043+00	17:04:22, -40:44:23	1.00 km/s.lsrk.RADIO
26	26-859739	16:59:20, -42:32:36	1.00 km/s.lsrk.RADIO
27	27-878610	17:12:33, -38:30:48	1.00 km/s.lsrk.BADIO
28	28-G349.6433-01	17:23:01, -38:13:51	1.00 km/s.lsrk.RADIO
29	29-870595	17:07:0040:21:47	1.00 km/s.lsrk.RADIO
30	30-854306	16:52:38, -43:23:08	1.00 km/s.lsrk.RADIO
31	31-884356	17:17:0837:50:39	1.00 km/s.lsrk.RADIO
32	32-857352	16:57:0643:05:19	1.00 km/s.lsrk.RADIO
33	33-854680	16:54:0243:29:11	1.00 km/s.lsrk.RADIO
34	34-863312	17:02:09, -41:46:44	1.00 km/s,lsrk,RADIO
35	35-879199	17:12:43, -38:23:24	1.00 km/s,lsrk,RADIO
36	36-851424	16:50:53, -44:07:02	1.00 km/s,lsrk,RADIO
37	37-884149	17:16:34, -37:50:01	1.00 km/s,lsrk,RADIO
38	38-869652	17:07:08, -40:40:21	1.00 km/s,lsrk,RADIO
39	39-G343.5213-00	17:01:34, -42:50:19	1.00 km/s,lsrk,RADIO
40	40-851446	16:51:32, -44:12:25	1.00 km/s,lsrk,RADIO
41	41-883676	17:20:14, -38:28:17	1.00 km/s,lsrk,RADIO
42	42-861674	17:03:17, -42:25:49	1.00 km/s,lsrk,RADIO
43	43-G343.1261-00	16:58:17, -42:52:07	1.00 km/s,lsrk,RADIO
44	44-G343.9033-00	17:03:30, -42:37:48	1.00 km/s,lsrk,RADIO
45	45-876288	17:11:51, -39:09:28	1.00 km/s,lsrk,RADIO
46	46-858568	16:58:34, -42:49:47	1.00 km/s,lsrk,RADIO
47	47-881427	17:20:07, -38:57:17	1.00 km/s,lsrk,RADIO
48	48-877566	17:15:18, -39:13:25	1.00 km/s,lsrk,RADIO
49	49-883709	17:16:54, -38:00:05	1.00 km/s,lsrk,RADIO
50	50-860646	17:00:49, -42:26:09	1.00 km/s,lsrk,RADIO
51	51-852558	16:53:44, -44:07:32	1.00 km/s,lsrk,RADIO
52	52-879552	17:14:25, -38:32:43	1.00 km/s,lsrk,RADIO
53	53-882440	17:17:00, -38:19:28	1.00 km/s,lsrk,RADIO
54	54-871384	17:07:53, -40:14:39	1.00 km/s,lsrk,RADIO
55	55-876842	17:12:17, -39:02:39	1.00 km/s,lsrk,RADIO
56	56-882131	17:15:10, -38:08:23	1.00 km/s,lsrk,RADIO
57	57-G348.7342-01	17:20:07, -38:57:14	1.00 km/s,lsrk,RADIO
58	58-875950	17:11:42, -39:14:09	1.00 km/s,lsrk,RADIO
59	59-860231	17:00:05, -42:29:26	1.00 km/s,lsrk,RADIO
L			

Expected Source Properties

	Peak Flux	SNR	Linewidth	RMS (over 1/3 linewidth)	linewidth / bandwidth used for sensitivity	Pol.	Pol. SNR
Line	1.00 mJy	0.1	1 km/s	11.72 mJy, 1.9 K	0.0002	0.0%	0.0
Continuum	1.00 mJy	10.6				0.0%	0.0
Dynamic rang	e (cont flux/li	ne rms): 0.1					

1 Tuning

Tuning	Target	Rep. Freq. Sky GHz	RMS (Rep. Freq.)	RMS Achieved
1	1,2,3,4,5,6,7,8,9,1	217.924273	93.53 μJy, 15.1 mK	93.53 uJy - 93.91 uJy

Note that one or more of the S/N estimates are < 3. Please double-check the RMS and/or line fluxes entered and/or address the issue below. Note that the bandwidth used for sensitivity is larger than 1/3 of the linewidth.

The S/N achieved for a resolution element that allows the line to be resolved will be lower than that reported.

- Justification for requested RMS and resulting S/N (and for spectral lines the bandwidth selected) for the sensitivity calculation.

A sensitivity of 100 µJy at 1.37 mm wavelength delivers a mass sensitivity of nearly 0.1 Msun using dust opacities form Ossenkopf & Henning with beta=2 and dust temperature of 17 K at 7 kpc, the maximum distance to our sources. This would allow to safely detect 0.3 M_sun sources, while our total source masses have a cutoff of 500 M_sun, so even with severe fragmentation we would discover all the fragments. With this, we will be able to sample the peak of a typical CMF in a low/intermediate-mass SF region like Aquila. Although in some cases we may be limited by the dynamic range, simulations are very successful in recovering all scales, as shown in Fig.2 in the proposal. Also, we found from past experience that self-cal can improve the dynamic range considerably.

For the lines maps, a spectral resolution of 0.5 km/s and a spatial resolution of 0.4" give a 1 sigma rms of 1.4 K, which is as shown in Fig. 2, is sufficient to analyze the line emission even in weaker cores, and could be further enhanced by spectral smoothing. Fig. 2 is based on real ALMA observations of a high-mass star-forming region. We will not be able to analyze the lines of all sources in that manner, but we expect that we will be able to do the analysis in enough sources to be worthwhile, and use 13CO in the ones weaker in H2CO or CH3CN.

-Justification of the chosen angular resolution and largest angular scale for the source(s) in this Science Goal.

We would like to get a resolution of about 0.4" to achieve a resolution of at least 2500 AU at all distances considered. This would allow to resolve the clusters sufficiently to determine the CMF, find large toroid-like rotating structures or circumbinary disks, and detect disk candidates for further studies. The largest scale is given by the desire to model the density and temperature structure on the clump scale, and to fully characterize the clumpßlevel

The configuration proposed by the OT for these requirements (C4-C1-ACA) has been verified to provide enough time for large programs to host our observations, if the sources can be spread out in an interval of +/- 3 h, as stated by the knowledge base, and verified by a helpdesk ticket. Thus, we do not exceed the time limit per LST interval for large programs, and our program poses no criticality in terms of scheduling feasibility for both requested configurations.

Correlator Comments

Note that the spectral resolution is larger than 1/3 of the the spectral line width and that your line may not be resolved.

- Justification of the correlator set-up with particular reference to the number of spectral resolution elements per line width.

SG : 1 of 6 High-mass stars 0 cluster 5 Band 6

Calanaa Caal Deremetere
Science Goal Parameters

Ang.Res.	LAS	Requested RMS	RMS Bandwidth	Rep.Freq.	Cont. RMS	Cont. Bandwidth	Poln.Prod.	Non-standard mode		
0.4000"	30.0"	100 μJy, 16.1 mK	5158.837 km/s, 3.7 GHz	217.925000 GHz	94.167 μJy, 15.2 mK	3.750 GHz	XX,YY	No		
lse of 12m Array (43 antennas)										
t_total(all configs)	t_sc	ience(C43-4) t_total(C43-1)	Imaged area #12m poi	nting 12m Mosa	ic spacing HPBW	t_per_point	Data Vol	Avg. Data Rate		

 L_clobal at complex
 L_clobal (c4:3-4)
 L_clobal (c4:3-1)
 Images area
 #1211 pointing
 1211 microal spacing
 H=DW
 L_per_point
 Data voi
 Avg. Data Rate

 9.7 h
 4.0 h
 2.5 h
 8.9 "
 75
 offset
 26.7 "
 217.1 s
 1111.2 GB
 39.4 MB/s

 Use of ACA 7m Array (10 antennas) and TP Array

t_total(ACA)	t_total(7m)	t_total(TP)	Imaged area	#7m pointing	7m Mosaic spacing	HPBW	t_per_point	Data Vol	Avg. Data Rate	
17.2 h	17.2 h	0.0 h	15.3 "	75	offset	45.8 "	482.2 s	43.5 GB	0.9 MB/s	

Spectral Setup : Spectral Line

BB	Center Freq Rest GHz	spw name	Eff #Ch p.p.	Bandwidth	Resolution	Vel. Bandwidth	Vel. Res.	Res. El. per FWHM
1	217.925000	Band 1	3840	1875.00 MHz	0.977 MHz	2579.4 km/s	1.343 km/s	1
2	220.000000	Band 2	3840	1875.00 MHz	0.977 MHz	2555.1 km/s	1.331 km/s	1
3	218.300000	H2CO lines	3840	468.75 MHz	244.141 kHz	643.7 km/s	0.335 km/s	3
4	220.600000	13CO and CH3CN	3840	468.75 MHz	244.141 kHz	637.0 km/s	0.332 km/s	3

75 Targets

No.	Target	Ra,Dec (ICRS)	V,def,frameORz
1	1-738167	14:26:52, -60:38:20	1.00 km/s,lsrk,RADIO
2	2-728411	14:05:45, -61:41:35	1.00 km/s,lsrk,RADIO
3	3-727996	14:04:08, -61:19:57	1.00 km/s,lsrk,RADIO
4	4-727758	14:03:3161:15:03	1.00 km/s.lsrk.RADIO
5	5-720177	13:48:44, -62:13:31	1.00 km/s.lsrk.RADIO
6	6-722749	13:56:01, -62:14:18	1.00 km/s.lsrk.RADIO
7	7-716498	13:40:26 -61:47:41	1 00 km/s lsrk RADIO
8	8-737702	14:25:00 -60:22:59	1 00 km/s lsrk RADIO
0	0-722654	13:58:08 -62:06:11	1.00 km/s lsrk PADIO
10	10 721500	12.51.12 61.22.00	1.00 km/s lork BADIO
11	11 726006	14.01.20 61.25.12	1.00 km/c lork BADIO
12	12 710654	14.01.30, -01.33.13	1.00 km/s lsrk BADIO
12	12-719034	13.40.20, -01.42.32	1.00 km/s lsrk RADIO
14	14 720125	14.13.14, -01.10.31	1.00 km/c lork BADIO
14	14-730133	14.00.47, -01.23.36	1.00 km/s lark DADIO
15	10-730127	14.08.42, -01.24.45	1.00 km/s lark DADIO
10	10-/10/13	13.40.29, -01.35.22	1.00 km/s,ISIK,RADIO
1/	17-G310.0135+00	13:51:37, -61:39:07	1.00 km/s,ISIK,RADIO
18	18-727203	14:02:10, -61:03:21	1.00 km/s,Isrk,RADIO
19	19-721478	13:52:34, -62:15:23	1.00 km/s,Isrk,RADIO
20	20-737520	14:25:17, -60:35:49	1.00 km/s,Isrk,RADIO
21	21-737999	14:25:40, -60:23:18	1.00 km/s,Isrk,RADIO
-22	22-719596	13:47:58, -62:34:17	1.00 km/s,Isrk,RADIO
23	23-737766	14:25:36, -60:32:11	1.00 km/s,Isrk,RADIO
24	24-728432	14:04:55, -61:20:07	1.00 km/s,lsrk,RADIO
25	25-732540	14:14:17, -61:12:18	1.00 km/s,lsrk,RADIO
26	26-730346	14:08:42, -61:12:45	1.00 km/s,lsrk,RADIO
27	27-732713	14:14:46, -61:11:36	1.00 km/s,lsrk,RADIO
28	28-729206	14:07:04, -61:28:52	1.00 km/s,lsrk,RADIO
29	29-721992	13:51:58, -61:15:39	1.00 km/s,lsrk,RADIO
30	30-G309.2203-00	13:46:37, -62:39:27	1.00 km/s,lsrk,RADIO
31	31-726482	14:01:35, -61:22:05	1.00 km/s,lsrk,RADIO
32	32-G309.9796+00	13:51:02, -61:30:14	1.00 km/s,lsrk,RADIO
33	33-728716	14:06:30, -61:43:56	1.00 km/s,lsrk,RADIO
34	34-G308.9176+00	13:43:01, -62:08:51	1.00 km/s,lsrk,RADIO
35	35-727831	14:03:38, -61:14:42	1.00 km/s,lsrk,RADIO
36	36-718926	13:46:45, -62:39:03	1.00 km/s,lsrk,RADIO
37	37-G311.4402+00	14:03:07, -61:15:27	1.00 km/s,lsrk,RADIO
38	38-733033	14:17:24, -61:51:10	1.00 km/s,lsrk,RADIO
39	39-719557	13:47:24, -62:18:11	1.00 km/s,lsrk,RADIO
40	40-G311.4925+00	14:03:34, -61:15:52	1.00 km/s,lsrk,RADIO
41	41-731221	14:11:23, -61:23:22	1.00 km/s,lsrk,RADIO
42	42-732373	14:14:02, -61:16:10	1.00 km/s,lsrk,RADIO
43	43-G311.5671+00	14:04:22, -61:19:27	1.00 km/s,lsrk,RADIO
44	44-721432	13:51:26, -61:45:01	1.00 km/s,lsrk,RADIO
45	45-G314.3197+00	14:26:26, -60:38:31	1.00 km/s,lsrk,RADIO
46	46-727645	14:05:18, -62:02:07	1.00 km/s,lsrk,RADIO
47	47-730655	14:10:34, -61:38:55	1.00 km/s,lsrk,RADIO
48	48-737671	14:24:55, -60:23:01	1.00 km/s,lsrk,RADIO
49	49-737815	14:26:08, -60:40:21	1.00 km/s,lsrk,RADIO
50	50-728786	14:05:34, -61:17:38	1.00 km/s,lsrk,RADIO
51	51-737588	14:25:13, -60:31:39	1.00 km/s,lsrk,RADIO
52	52-737787	14:26:05, -60:40:50	1.00 km/s,lsrk,RADIO
53	53-G311.5131-00	14:05:45, -62:04:49	1.00 km/s,lsrk,RADIO
54	54-716353	13:39:54, -61:41:15	1.00 km/s,lsrk.RADIO
55	55-718521	13:45:51, -62:33:49	1.00 km/s.lsrk.RADIO
56	56-721272	13:50:42, -61:35:12	1.00 km/s.lsrk.RADIO
57	57-723759	13:58:21, -62:05:39	1.00 km/s.lsrk.RADIO
58	58-721154	13:50:36 -61:40:19	1 00 km/s lsrk RADIO
59	59-721199	13:51:01, -61:49:55	1.00 km/s.jsrk RADIO
60	60-725400	14:00:05 -61:23:31	1 00 km/s lsrk RADIO
00	00 120400	1.00.00, -01.20.01	1.00 1003,010,000

Expected Source Properties

	Peak Flux	SNR	Linewidth	RMS (over 1/3 linewidth)	linewidth / bandwidth used for sensitivity	Pol.	Pol. SNR		
Line	1.00 mJy	0.1	1 km/s	11.71 mJy, 1.9 K	0.0002	0.0%	0.0		
Continuum	1.00 mJy	10.6				0.0%	0.0		
Dynamic range (cont flux/line rms): 0.1									

1 Tuning

Tuning	Target Rep. Freq. Sky GHz		RMS (Rep. Freq.)	RMS Achieved		
1	1,2,3,4,5,6,7,8,9,1	217.924273	94.51 μJy, 15.2 mK	94.51 uJy - 94.94 uJy		

No.	Target	Ra,Dec (ICRS)	V,def,frameORz
61	61-719342	13:47:58, -62:48:35	1.00 km/s,lsrk,RADIO
62	62-716820	13:40:57, -61:45:44	1.00 km/s,lsrk,RADIO
63	63-718270	13:44:38, -62:05:34	1.00 km/s,lsrk,RADIO
64	64-724889	13:58:34, -61:05:43	1.00 km/s,lsrk,RADIO
65	65-728443	14:04:59, -61:21:28	1.00 km/s,lsrk,RADIO
66	66-730452	14:09:46, -61:32:51	1.00 km/s,lsrk,RADIO
67	67-721229	13:50:54, -61:44:23	1.00 km/s,lsrk,RADIO
68	68-732775	14:15:07, -61:16:02	1.00 km/s,lsrk,RADIO
69	69-722061	13:52:12, -61:18:43	1.00 km/s,lsrk,RADIO
70	70-737579	14:25:15, -60:32:46	1.00 km/s,lsrk,RADIO
71	71-731606	14:12:32, -61:24:55	1.00 km/s,lsrk,RADIO
72	72-721517	13:52:41, -62:15:26	1.00 km/s,lsrk,RADIO
73	73-715349	13:38:23, -62:26:18	1.00 km/s,lsrk,RADIO
74	74-720116	13:49:50, -62:51:34	1.00 km/s,lsrk,RADIO
75	75-718642	13:45:58, -62:32:10	1.00 km/s,lsrk,RADIO

Note that one or more of the S/N estimates are < 3. Please double-check the RMS and/or line fluxes entered and/or address the issue below. Note that the bandwidth used for sensitivity is larger than 1/3 of the linewidth.

The S/N achieved for a resolution element that allows the line to be resolved will be lower than that reported.

- Justification for requested RMS and resulting S/N (and for spectral lines the bandwidth selected) for the sensitivity calculation.

A sensitivity of 100 µJy at 1.37 mm wavelength delivers a mass sensitivity of nearly 0.1 Msun using dust opacities form Ossenkopf & Henning with beta=2 and dust temperature of 17 K at 7 kpc, the maximum distance to our sources. This would allow to safely detect 0.3 M_sun sources, while our total source masses have a cutoff of 500 M_sun, so even with severe fragmentation we would discover all the fragments. With this, we will be able to sample the peak of a typical CMF in a low/intermediate-mass SF region like Aquila. Although in some cases we may be limited by the dynamic range, simulations are very successful in recovering all scales, as shown in Fig.2 in the proposal. Also, we found from past experience that self-cal can improve the dynamic range considerably.

For the lines maps, a spectral resolution of 0.5 km/s and a spatial resolution of 0.4" give a 1 sigma rms of 1.4 K, which is as shown in Fig. 2, is sufficient to analyze the line emission even in weaker cores, and could be further enhanced by spectral smoothing. Fig. 2 is based on real ALMA observations of a high-mass star-forming region. We will not be able to analyze the lines of all sources in that manner, but we expect that we will be able to do the analysis in enough sources to be worthwhile, and use 13CO in the ones weaker in H2CO or CH3CN.

-Justification of the chosen angular resolution and largest angular scale for the source(s) in this Science Goal.

We would like to get a resolution of about 0.4" to achieve a resolution of at least 2500 AU at all distances considered. This would allow to resolve the clusters sufficiently to determine the CMF, find large toroid-like rotating structures or circumbinary disks, and detect disk candidates for further studies. The largest scale is given by the desire to model the density and temperature structure on the clump scale, and to fully characterize the clumpßlevel

The configuration proposed by the OT for these requirements (C4-C1-ACA) has been verified to provide enough time for large programs to host our observations, if the sources can be spread out in an interval of +/- 3 h, as stated by the knowledge base, and verified by a helpdesk ticket. Thus, we do not exceed the time limit per LST interval for large programs, and our program poses no criticality in terms of scheduling feasibility for both requested configurations.

Correlator Comments

Note that the spectral resolution is larger than 1/3 of the the spectral line width and that your line may not be resolved.

- Justification of the correlator set-up with particular reference to the number of spectral resolution elements per line width.

SG : 1 of 6 High-mass stars 0 cluster 6 Band 6

cience Goal Parameters												
Ang.Res. LAS Requested RMS		RMS Bandwidth		F	Rep.Freq.	Cont. RMS		Cont. Bandwidth	Poln.Prod.	Non-standard mode		
0.4000"	30.0"	100 µ	Jy, 16.1 mK	5158.82 km/s,	3.7 GHz	217.9	217.925000 GHz 93.562 µJy, 15.1 mK		3.750 GHz	XX,YY	No	
Jse of 12m Array (43 antennas)												
t_total(all configs)	t_sci	ence(C43-4)	t_total(C43-1)	Imaged area	#12m poir	iting	12m Mosai	c spacing	HPBW	t_per_point	Data Vol	Avg. Data Rate
4.5 h		1.8 h	1.1 h	8.9 "	34		offs	et	26.7 "	217.4 s	519.6 GB	39.6 MB/s

Use of ACA 7m Array (10 antennas) and TP Array

t_total(ACA)	t_total(7m)	t_total(TP)	Imaged area	#7m pointing	7m Mosaic spacing	HPBW	t_per_point	Data Vol	Avg. Data Rate
8.0 h	8.0 h	0.0 h	15.3 "	34	offset	45.8 "	483.2 s	20.4 GB	0.9 MB/s

Spectral Setup : Spectral Line

BB	Center Freq Rest GHz	spw name	Eff #Ch p.p.	Bandwidth	Resolution	Vel. Bandwidth	Vel. Res.	Res. El. per FWHM
1	217.925000	Band 1	3840	1875.00 MHz	0.977 MHz	2579.4 km/s	1.343 km/s	1
2	220.000000	Band 2	3840	1875.00 MHz	0.977 MHz	2555.1 km/s	1.331 km/s	1
3	218.300000	H2CO lines	3840	468.75 MHz	244.141 kHz	643.7 km/s	0.335 km/s	3
4	220.600000	13CO and CH3CN	3840	468.75 MHz	244.141 kHz	637.0 km/s	0.332 km/s	3

34 Targets

No.	Target	Ra,Dec (ICRS)	V,def,frameORz		
1	1-746985	14:49:07, -59:24:45	1.00 km/s,lsrk,RADIO		
2	2-765015	15:20:29, -56:27:21	1.00 km/s,lsrk,RADIO		
3	3-G323.7410-00.2	15:31:45, -56:30:49	1.00 km/s,lsrk,RADIO		
4	4-744588	14:45:00, -59:48:36	1.00 km/s,lsrk,RADIO		
5	5-G316.5871-00.8	14:46:23, -60:35:47	1.00 km/s,lsrk,RADIO		
6	6-749006	14:53:53, -59:27:28	1.00 km/s,lsrk,RADIO		
7	7-G322.1729+00.6	15:18:38, -56:37:30	1.00 km/s,lsrk,RADIO		
8	8-768300	15:31:00, -56:35:01	1.00 km/s,lsrk,RADIO		
9	9-G323.7399-00.2	15:31:45, -56:30:50	1.00 km/s,lsrk,RADIO		
10	10-744638	14:45:22, -59:52:39	1.00 km/s,lsrk,RADIO		
11	11-743852	14:43:15, -59:50:10	1.00 km/s,lsrk,RADIO		
12	12-G316.6412-00	14:44:18, -59:55:10	1.00 km/s,lsrk,RADIO		
13	13-757098	15:07:21, -57:49:24	1.00 km/s,lsrk,RADIO		
14	14-G324.1581+00	15:32:10, -55:51:59	1.00 km/s,lsrk,RADIO		
15	15-746750	14:48:19, -59:19:36	1.00 km/s,lsrk,RADIO		
16	16-753433	14:59:56, -57:51:09	1.00 km/s,lsrk,RADIO		
17	17-759150	15:10:43, -57:44:45	1.00 km/s,lsrk,RADIO		
18	18-G318.9480-00	15:00:55, -58:58:52	1.00 km/s,lsrk,RADIO		
19	19-744757	14:45:26, -59:49:16	1.00 km/s,lsrk,RADIO		
20	20-G320.1542+00	15:05:17, -57:31:40	1.00 km/s,lsrk,RADIO		
21	21-G318.0489+00	14:53:42, -59:08:52	1.00 km/s,lsrk,RADIO		
22	22-764038	15:18:39, -56:39:07	1.00 km/s,lsrk,RADIO		
23	23-G324.1594+00	15:32:03, -55:50:35	1.00 km/s,lsrk,RADIO		
24	24-754973	15:03:28, -57:40:41	1.00 km/s,lsrk,RADIO		
25	25-744391	14:44:18, -59:44:14	1.00 km/s,lsrk,RADIO		
26	26-760641	15:16:06, -58:11:41	1.00 km/s,lsrk,RADIO		
27	27-760875	15:16:31, -58:09:00	1.00 km/s,lsrk,RADIO		
28	28-768907	15:30:59, -56:11:21	1.00 km/s,lsrk,RADIO		
29	29-767784	15:29:19, -56:31:21	1.00 km/s,lsrk,RADIO		
30	30-747712	14:50:39, -59:22:54	1.00 km/s,lsrk,RADIO		
31	31-756464	15:05:16, -57:30:01	1.00 km/s,lsrk,RADIO		
32	32-759398	15:11:19, -57:45:37	1.00 km/s,lsrk,RADIO		
33	33-754862	15:06:54, -58:32:56	1.00 km/s,lsrk,RADIO		
34	34-772336	15:39:57, -56:04:07	1.00 km/s,lsrk,RADIO		

Expected Source Properties

	Peak Flux	SNR	Linewidth	RMS (over 1/3 linewidth)	linewidth / bandwidth used for sensitivity	Pol.	Pol. SNR		
Line	1.00 mJy	0.1	1 km/s	11.64 mJy, 1.9 K	0.0002	0.0%	0.0		
Continuum	1.00 mJy	10.7				0.0%	0.0		
Dynamic range (cont flux/line rms): 0.1									

1 Tuning

Tuning	Target	Rep. Freq. Sky GHz	RMS (Rep. Freq.)	RMS Achieved
1	1,2,3,4,5,6,7,8,9,1	217.924273	93.73 μJy, 15.1 mK	93.73 uJy - 94.15 uJy

Note that one or more of the S/N estimates are < 3. Please double-check the RMS and/or line fluxes entered and/or address the issue below. Note that the bandwidth used for sensitivity is larger than 1/3 of the linewidth.

The S/N achieved for a resolution element that allows the line to be resolved will be lower than that reported.

- Justification for requested RMS and resulting S/N (and for spectral lines the bandwidth selected) for the sensitivity calculation.

A sensitivity of 100 µJy at 1.37 mm wavelength delivers a mass sensitivity of nearly 0.1 Msun using dust opacities form Ossenkopf & Henning with beta=2 and dust temperature of 17 K at 7 kpc, the maximum distance to our sources. This would allow to safely detect 0.3 M_sun sources, while our total source masses have a cutoff of 500 M_sun, so even with severe fragmentation we would discover all the fragments. With this, we will be able to sample the peak of a typical CMF in a low/intermediate-mass SF region like Aquila. Although in some cases we may be limited by the dynamic range, simulations are very successful in recovering all scales, as shown in Fig.2 in the proposal. Also, we found from past experience that self-cal can improve the dynamic range considerably.

For the lines maps, a spectral resolution of 0.5 km/s and a spatial resolution of 0.4" give a 1 sigma rms of 1.4 K, which is as shown in Fig. 2, is sufficient to analyze the line emission even in weaker cores, and could be further enhanced by spectral smoothing. Fig. 2 is based on real ALMA observations of a high-mass star-forming region. We will not be able to analyze the lines of all sources in that manner, but we expect that we will be able to do the analysis in enough sources to be worthwhile, and use 13CO in the ones weaker in H2CO or CH3CN.

-Justification of the chosen angular resolution and largest angular scale for the source(s) in this Science Goal.

We would like to get a resolution of about 0.4" to achieve a resolution of at least 2500 AU at all distances considered. This would allow to resolve the clusters sufficiently to determine the CMF, find large toroid-like rotating structures or circumbinary disks, and detect disk candidates for further studies. The largest scale is given by the desire to model the density and temperature structure on the clump scale, and to fully characterize the clumpßlevel

The configuration proposed by the OT for these requirements (C4-C1-ACA) has been verified to provide enough time for large programs to host our observations, if the sources can be spread out in an interval of +/- 3 h, as stated by the knowledge base, and verified by a helpdesk ticket. Thus, we do not exceed the time limit per LST interval for large programs, and our program poses no criticality in terms of scheduling feasibility for both requested configurations.

Correlator Comments

Note that the spectral resolution is larger than 1/3 of the the spectral line width and that your line may not be resolved.

- Justification of the correlator set-up with particular reference to the number of spectral resolution elements per line width.

SG : 1 of 6 High-mass stars 0 cluster 7 Band 6

cience Goal Parameters													
Ang.Res.	LAS	Rec	quested RMS	RMS Ba	andwidth	F	Rep.Freq.		Cont. RMS	Cont. Bandwidth	Poln.Prod.	Non-standard mode	
0.4000"	0.4000" 30.0" 100 μJy, 16.1 mK				1/s, 3.7 GHz	217.9	925000 GHz	97.16	64 μJy, 15.6 mK	3.750 GHz	XX,YY	No	
se of 12m Array (43 antennas)													
t_total(all configs)	t_sc	ience(C43-4)	t_total(C43-1)	Imaged area	#12m poin	iting	12m Mosaid	c spacing	HPBW	t_per_point	Data Vol	Avg. Data Rate	
0.7 h		0.1 h	0.2 h	8.9 "	3		offs	et	26.7 "	181.3 s	62.8 GB	39.2 MB/s	
Use of ACA 7m Array	se of ACA 7m Array (10 antennas) and TP Array												
t_total(ACA)	t_total(ACA) t_total(TP) Imaged area #7m pointing 7m Mosaic spacing HPBW t_per_point Data Vol Avg. Data Rate												
1.1 h	1.	.1 h	0.0 h	15.3 "	3		offset		45.8 "	423.3 s	2.2 GB	0.8 MB/s	

Spectral Setup : Spectral Line

BB	Center Freq Rest GHz	spw name	Eff #Ch p.p.	Bandwidth	Resolution	Vel. Bandwidth	Vel. Res.	Res. El. per FWHM
1	217.925000	Band 1	3840	1875.00 MHz	0.977 MHz	2579.5 km/s	1.344 km/s	1
2	220.000000	Band 2	3840	1875.00 MHz	0.977 MHz	2555.2 km/s	1.331 km/s	1
3	218.300000	H2CO lines	3840	468.75 MHz	244.141 kHz	643.8 km/s	0.335 km/s	3
4	220.600000	13CO and CH3CN	3840	468.75 MHz	244.141 kHz	637.1 km/s	0.332 km/s	3
-	220.000000	1000 414 01001	3040	400.75 10112	244.141 KHZ	007.1 ((1)/3	0.002 111/3	<u>0</u>

3 Targets

Expected Source Properties

	Peak Flux	SNR	Linewidth	RMS (over 1/3 linewidth)	linewidth / bandwidth used for sensitivity	Pol.	Pol. SNR
Line	1.00 mJy	0.1	1 km/s	12.09 mJy, 1.9 K	0.0002	0.0%	0.0
Continuum	1.00 mJy	10.3				0.0%	0.0
	- (+ fl						

No.	Target	Ra,Dec (ICRS)	V,def,frameORz
1	1-G217.0441-00.0	06:58:44, -03:41:09	1.00 km/s,lsrk,RADIO
2	2-G221.9605-01.9	07:00:50, -08:56:30	1.00 km/s,lsrk,RADIO
3	3-519248	07:00:57, -03:51:17	1.00 km/s,lsrk,RADIO

Dynamic range (cont flux/line rms): 0.1

1 Tuning				
Tuning	Target	Rep. Freq.	RMS	RMS
		Sky GHz	(Rep. Freq.)	Achieved
1	1.2.3	217.924273	97.13 µJv. 15.6 mK	97.13 uJv - 97.53 uJv

Note that one or more of the S/N estimates are < 3. Please double-check the RMS and/or line fluxes entered and/or address the issue below. Note that the bandwidth used for sensitivity is larger than 1/3 of the linewidth.

The S/N achieved for a resolution element that allows the line to be resolved will be lower than that reported.

- Justification for requested RMS and resulting S/N (and for spectral lines the bandwidth selected) for the sensitivity calculation.

A sensitivity of 100 µJy at 1.37 mm wavelength delivers a mass sensitivity of nearly 0.1 Msun using dust opacities form Ossenkopf & Henning with beta=2 and dust temperature of 17 K at 7 kpc, the maximum distance to our sources. This would allow to safely detect 0.3 M_sun sources, while our total source masses have a cutoff of 500 M_sun, so even with severe fragmentation we would discover all the fragments. With this, we will be able to sample the peak of a typical CMF in a low/intermediate-mass SF region like Aquila. Although in some cases we may be limited by the dynamic range, simulations are very successful in recovering all scales, as shown in Fig.2 in the proposal. Also, we found from past experience that self-cal can improve the dynamic range considerably.

For the lines maps, a spectral resolution of 0.5 km/s and a spatial resolution of 0.4" give a 1 sigma rms of 1.4 K, which is as shown in Fig. 2, is sufficient to analyze the line emission even in weaker cores, and could be further enhanced by spectral smoothing. Fig. 2 is based on real ALMA observations of a high-mass star-forming region. We will not be able to analyze the lines of all sources in that manner, but we expect that we will be able to do the analysis in enough sources to be worthwhile, and use 13CO in the ones weaker in H2CO or CH3CN.

-Justification of the chosen angular resolution and largest angular scale for the source(s) in this Science Goal.

We would like to get a resolution of about 0.4" to achieve a resolution of at least 2500 AU at all distances considered. This would allow to resolve the clusters sufficiently to determine the CMF, find large toroid-like rotating structures or circumbinary disks, and detect disk candidates for further studies. The largest scale is given by the desire to model the density and temperature structure on the clump scale, and to fully characterize the clumpßlevel

The configuration proposed by the OT for these requirements (C4-C1-ACA) has been verified to provide enough time for large programs to host our observations, if the sources can be spread out in an interval of +/- 3 h, as stated by the knowledge base, and verified by a helpdesk ticket. Thus, we do not exceed the time limit per LST interval for large programs, and our program poses no criticality in terms of scheduling feasibility for both requested configurations.

Correlator Comments

Note that the spectral resolution is larger than 1/3 of the the spectral line width and that your line may not be resolved.

-Justification of the correlator set-up with particular reference to the number of spectral resolution elements per line width.

SG : 1 of 6 High-mass stars 0 cluster 8 Band 6

 No.
 Target
 Ra,Dec (ICRS)

 1
 1-6231,7986-01.9...
 07:19:35, -17:39:18

 2
 2-543232
 07:30:13, -18:31:57

 3
 3-545969
 07:27:41, -20:20:07

 4
 4-6233,8306-00.1.
 07:30:16, -18:35:49

 5
 5-G232.0766-02.2...
 07:18:59, -18:02:41

 6
 6-545262
 07:31:48, -19:18:11

icience Goal Parameters												
Ang.Res.	Ang.Res. LAS Requested RMS RMS Bandwidth Rep.Freq. Cont. RMS Cont. Bandwidth Poln.Prod. Non-standard mode											
0.4000"	0.4000" 30.0" 100 μJy, 16.1 mK			5159.093 km	1/s, 3.7 GHz	217.	.925000 GHz	95.5	74 μJy, 15.4 mK	3.750 GHz	XX,YY	No
Jse of 12m Array (43 antennas)												
t_total(all configs)	t_scie	ence(C43-4)	t_total(C43-1)	Imaged area	#12m poin	nting	12m Mosai	c spacing	HPBW	t_per_point	Data Vol	Avg. Data Rate
0.9 h		0.3 h	0.2 h	8.9 "	6		offset		26.7 "	181.3 s	96.6 GB	40.1 MB/s
Use of ACA 7m Array	ise of ACA 7m Array (10 antennas) and TP Array											
t_total(ACA)	t_total(ACA) t_total(7m) t_total(7P) Imaged area #7m pointing 7m Mosaic spacing HPBW t_per_point Data Vol Avg. Data Rate											
1.5 h	1.5	5 h	0.0 h	15.3 "	6		offset		45.8 "	423.3 s	3.5 GB	0.8 MB/s

1.5 h 1.5 h 0.0 h 15.3 " 6 Spectral Setup : Spectral Line DD

V,def,frame --OR--z

V, der, Irame - OR--2 1.00 km/s, Isrk, RADIO 1.00 km/s, Isrk, RADIO

BB	Center Freq Rest GHz	spw name	Eff #Ch p.p.	Bandwidth	Resolution	Vel. Bandwidth	Vel. Res.	Res. El. per FWHM
1	217.925000	Band 1	3840	1875.00 MHz	0.977 MHz	2579.5 km/s	1.344 km/s	1
2	220.000000	Band 2	3840	1875.00 MHz	0.977 MHz	2555.2 km/s	1.331 km/s	1
3	218.300000	H2CO lines	3840	468.75 MHz	244.141 kHz	643.8 km/s	0.335 km/s	3
4	220.600000	13CO and CH3CN	3840	468.75 MHz	244.141 kHz	637.1 km/s	0.332 km/s	3
C Torreto			E	venoted Source Bropertie	20			

6 Targets

Expected Source Properties

	Peak Flux	SNR	Linewidth	RMS (over 1/3 linewidth)	linewidth / bandwidth used for sensitivity	Pol.	Pol. SNR
Line	1.00 mJy	0.1	1 km/s	11.89 mJy, 1.9 K	0.0002	0.0%	0.0
Continuum	1.00 mJy	10.5				0.0%	0.0
Dynamic rang	e (cont flux/li	ne rms): 0.1					

1 Tuning

Tuning	Target	Rep. Freq.	RMS	RMS
		SKY GHZ	(Rep. Freq.)	Achieveu
1	1,2,3,4,5,6	217.924273	95.48 μJy, 15.4 mK	95.48 uJy - 95.85 uJy

Note that one or more of the S/N estimates are < 3. Please double-check the RMS and/or line fluxes entered and/or address the issue below. Note that the bandwidth used for sensitivity is larger than 1/3 of the linewidth.

The S/N achieved for a resolution element that allows the line to be resolved will be lower than that reported.

- Justification for requested RMS and resulting S/N (and for spectral lines the bandwidth selected) for the sensitivity calculation.

A sensitivity of 100 µJy at 1.37 mm wavelength delivers a mass sensitivity of nearly 0.1 Msun using dust opacities form Ossenkopf & Henning with beta=2 and dust temperature of 17 K at 7 kpc, the maximum distance to our sources. This would allow to safely detect 0.3 M_sun sources, while our total source masses have a cutoff of 500 M_sun, so even with severe fragmentation we would discover all the fragments. With this, we will be able to sample the peak of a typical CMF in a low/intermediate-mass SF region like Aquila. Although in some cases we may be limited by the dynamic range, simulations are very successful in recovering all scales, as shown in Fig.2 in the proposal. Also, we found from past experience that self-cal can improve the dynamic range considerably.

For the lines maps, a spectral resolution of 0.5 km/s and a spatial resolution of 0.4" give a 1 sigma rms of 1.4 K, which is as shown in Fig. 2, is sufficient to analyze the line emission even in weaker cores, and could be further enhanced by spectral smoothing. Fig. 2 is based on real ALMA observations of a high-mass star-forming region. We will not be able to analyze the lines of all sources in that manner, but we expect that we will be able to do the analysis in enough sources to be worthwhile, and use 13CO in the ones weaker in H2CO or CH3CN.

-Justification of the chosen angular resolution and largest angular scale for the source(s) in this Science Goal.

We would like to get a resolution of about 0.4" to achieve a resolution of at least 2500 AU at all distances considered. This would allow to resolve the clusters sufficiently to determine the CMF, find large toroid-like rotating structures or circumbinary disks, and detect disk candidates for further studies. The largest scale is given by the desire to model the density and temperature structure on the clump scale, and to fully characterize the clumpßlevel

The configuration proposed by the OT for these requirements (C4-C1-ACA) has been verified to provide enough time for large programs to host our observations, if the sources can be spread out in an interval of +/- 3 h, as stated by the knowledge base, and verified by a helpdesk ticket. Thus, we do not exceed the time limit per LST interval for large programs, and our program poses no criticality in terms of scheduling feasibility for both requested configurations.

Correlator Comments

Note that the spectral resolution is larger than 1/3 of the the spectral line width and that your line may not be resolved.

-Justification of the correlator set-up with particular reference to the number of spectral resolution elements per line width.

SG : 1 of 6 High-mass stars 0 cluster 9 Band 6

Science Goal Parame	ters											
Ang.Res.	LAS	R	equested RMS	RMS B	andwidth		Rep.Freq.		Cont. RMS	Cont. Bandwidth	Poln.Prod.	Non-standard mode
0.4000"	0.4000" 30.0" 100 μJy, 16.1 mK			5159.09 km	5159.09 km/s, 3.7 GHz			95.4	75 μJy, 15.4 mK	3.750 GHz	XX,YY	No
Jse of 12m Array (43 antennas)												
t_total(all configs)	t_scie	ence(C43-4)	t_total(C43-1)	Imaged area	#12m poir	nting	12m Mosai	c spacing	HPBW	t_per_point	Data Vol	Avg. Data Rate
0.9 h		0.3 h	0.2 h	8.9 "	7	offset		et	26.7 "	181.3 s	106.5 GB	40.3 MB/s
Use of ACA 7m Array	se of ACA 7m Array (10 antennas) and TP Array											
t_total(ACA)	t_tota	l(7m)	t_total(TP)	Imaged area	#7m pointing		7m Mosaic sp	acing	HPBW	t_per_point	Data Vol	Avg. Data Rate
1.7 h	1.7	7h	0.0 h	15.3 "	7		offset		45.8 "	423.3 s	3.9 GB	0.8 MB/s

Spectral Setup : Spectral Line

BB	Center Freq Rest GHz	spw name	Eff #Ch p.p.	Bandwidth	Resolution	Vel. Bandwidth	Vel. Res.	Res. El. per FWHM
1	217.925000	Band 1	3840	1875.00 MHz	0.977 MHz	2579.5 km/s	1.344 km/s	1
2	220.000000	Band 2	3840	1875.00 MHz	0.977 MHz	2555.2 km/s	1.331 km/s	1
3	218.300000	H2CO lines	3840	468.75 MHz	244.141 kHz	643.8 km/s	0.335 km/s	3
4	220.600000	13CO and CH3CN	3840	468.75 MHz	244.141 kHz	637.1 km/s	0.332 km/s	3
7 Targets Expected Source Properties								

No. Target Ra,Dec (ICRS) 1 1-554367 07:45:07,-25:32:16 2 2-548966 07:33:13,-22:07:51 3 3-552040 07:34:51,-24:36:16 4 4-549061 07:33:20,-22:10:59 5 5-6242.9402-00.4... 07:48:43,-26:39:30 6 6-554507 07:45:24,-25:37:49 7 7-551585 07:34:42,-24:08:46 V,def,frame --OR--z 1.00 km/s,lsrk,RADIO 1.00 km/s,lsrk,RADIO 1.00 km/s,lsrk,RADIO 1.00 km/s,lsrk,RADIO 1.00 km/s,lsrk,RADIO 1.00 km/s,lsrk,RADIO 1.00 km/s,lsrk,RADIO

Expected Source Properties

	Deels Elun	CNID	Linewidth	RMS	RMS linewidth / bandwidth		Pol.
	Peak Flux	SNR		(over 1/3 linewidth)	used for sensitivity	P0I.	SNR
Line	1.00 mJy	0.1	1 km/s	11.88 mJy, 1.9 K	0.0002	0.0%	0.0
Continuum	1.00 mJy	10.5				0.0%	0.0
Dynamic range	e (cont flux/li	ne rms): 0.1					

1 Tuning

Tuning	Target	Rep. Freq.	RMS	RMS
		Sky GHz	(Rep. Freq.)	Achieved
1	1.2.3.4.5.6.7	217.924273	95.46 µJv. 15.4 mK	95.46 uJv - 95.83 uJv

Note that one or more of the S/N estimates are < 3. Please double-check the RMS and/or line fluxes entered and/or address the issue below. Note that the bandwidth used for sensitivity is larger than 1/3 of the linewidth.

The S/N achieved for a resolution element that allows the line to be resolved will be lower than that reported.

- Justification for requested RMS and resulting S/N (and for spectral lines the bandwidth selected) for the sensitivity calculation.

A sensitivity of 100 µJy at 1.37 mm wavelength delivers a mass sensitivity of nearly 0.1 Msun using dust opacities form Ossenkopf & Henning with beta=2 and dust temperature of 17 K at 7 kpc, the maximum distance to our sources. This would allow to safely detect 0.3 M_sun sources, while our total source masses have a cutoff of 500 M_sun, so even with severe fragmentation we would discover all the fragments. With this, we will be able to sample the peak of a typical CMF in a low/intermediate-mass SF region like Aquila. Although in some cases we may be limited by the dynamic range, simulations are very successful in recovering all scales, as shown in Fig.2 in the proposal. Also, we found from past experience that self-cal can improve the dynamic range considerably.

For the lines maps, a spectral resolution of 0.5 km/s and a spatial resolution of 0.4" give a 1 sigma rms of 1.4 K, which is as shown in Fig. 2, is sufficient to analyze the line emission even in weaker cores, and could be further enhanced by spectral smoothing. Fig. 2 is based on real ALMA observations of a high-mass star-forming region. We will not be able to analyze the lines of all sources in that manner, but we expect that we will be able to do the analysis in enough sources to be worthwhile, and use 13CO in the ones weaker in H2CO or CH3CN.

-Justification of the chosen angular resolution and largest angular scale for the source(s) in this Science Goal.

We would like to get a resolution of about 0.4" to achieve a resolution of at least 2500 AU at all distances considered. This would allow to resolve the clusters sufficiently to determine the CMF, find large toroid-like rotating structures or circumbinary disks, and detect disk candidates for further studies. The largest scale is given by the desire to model the density and temperature structure on the clump scale, and to fully characterize the clumpßlevel

The configuration proposed by the OT for these requirements (C4-C1-ACA) has been verified to provide enough time for large programs to host our observations, if the sources can be spread out in an interval of +/- 3 h, as stated by the knowledge base, and verified by a helpdesk ticket. Thus, we do not exceed the time limit per LST interval for large programs, and our program poses no criticality in terms of scheduling feasibility for both requested configurations.

Correlator Comments

Note that the spectral resolution is larger than 1/3 of the the spectral line width and that your line may not be resolved.

-Justification of the correlator set-up with particular reference to the number of spectral resolution elements per line width.

SG : 1 of 6 High-mass stars 0 cluster 10 Band 6

Science Goal Parameters												
Ang.Res.	LAS	Req	lested RMS	RMS Band	dwidth	R	ep.Freq.	(Cont. RMS	Cont. Bandwidth	Poln.Prod.	Non-standard mode
0.4000"	30.0"	100 µ	ιJy, 16.1 mK	5158.912 km/s	, 3.7 GHz	217.9	25000 GHz	90.24	5 μJy, 14.5 mK	3.750 GHz	XX,YY	No
Use of 12m Array (43 antennas)												
t_total(all configs)	t_sci	ience(C43-4)	t_total(C43-1)	Imaged area	#12m poir	nting	12m Mosai	c spacing	HPBW	t_per_point	Data Vol	Avg. Data Rate
2.7 h		1.0 h	0.7 h	8.9 "	18		offs	et	26.7 "	241.7 s	314.0 GB	39.7 MB/s
Use of ACA 7m Arrav (10 antennas) and TP Arrav												

l	Jse	ot	ACA	7m .	Array	(10	antennas	and	TP	Array	

t_total(ACA)	t_total(7m)	t_total(TP)	Imaged area	#7m pointing	7m Mosaic spacing	HPBW	t_per_point	Data Vol	Avg. Data Rate
4.8 h	4.8 h	0.0 h	15.3 "	18	offset	45.8 "	483.5 s	12.3 GB	0.9 MB/s

Spectral Setup : Spectral Line

BB	Center Freq Rest GHz	spw name	Eff #Ch p.p.	Bandwidth	Resolution	Vel. Bandwidth	Vel. Res.	Res. El. per FWHM
1	217.925000	Band 1	3840	1875.00 MHz	0.977 MHz	2579.5 km/s	1.343 km/s	1
2	220.000000	Band 2	3840	1875.00 MHz	0.977 MHz	2555.1 km/s	1.331 km/s	1
3	218.300000	H2CO lines	3840	468.75 MHz	244.141 kHz	643.8 km/s	0.335 km/s	3
4	220.600000	13CO and CH3CN	3840	468.75 MHz	244.141 kHz	637.0 km/s	0.332 km/s	3

18 Targets

No.	Target	Ra,Dec (ICRS)	V,def,frameORz
1	1-690556	12:27:08, -62:49:45	1.00 km/s,lsrk,RADIO
2	2-G300.3412-00.2	12:28:35, -62:58:35	1.00 km/s,lsrk,RADIO
3	3-685630	12:10:02, -62:53:36	1.00 km/s,lsrk,RADIO
4	4-691350	12:29:42, -62:13:12	1.00 km/s,lsrk,RADIO
5	5-693364	12:36:51, -63:03:03	1.00 km/s,lsrk,RADIO
6	6-687329	12:14:41, -62:37:12	1.00 km/s,lsrk,RADIO
7	7-696378	12:46:43, -62:35:14	1.00 km/s,lsrk,RADIO
8	8-G301.8147+00.7	12:41:53, -62:04:14	1.00 km/s,lsrk,RADIO
9	9-683688	12:03:16, -63:11:17	1.00 km/s,lsrk,RADIO
10	10-694812	12:42:20, -62:08:08	1.00 km/s,lsrk,RADIO
11	11-694272	12:40:34, -62:36:00	1.00 km/s,lsrk,RADIO
12	12-695243	12:43:31, -62:36:14	1.00 km/s,lsrk,RADIO
13	13-694475	12:41:11, -62:34:43	1.00 km/s,lsrk,RADIO
14	14-691590	12:29:55, -62:52:20	1.00 km/s,lsrk,RADIO
15	15-694144	12:39:57, -63:04:43	1.00 km/s,lsrk,RADIO
16	16-692212	12:32:22, -62:41:36	1.00 km/s,lsrk,RADIO
17	17-694823	12:42:20, -62:14:28	1.00 km/s,lsrk,RADIO
18	18-693050	12:35:35, -63:02:32	1.00 km/s,lsrk,RADIO

Expected Source Properties

	Peak Flux	SNR	Linewidth	RMS (over 1/3 linewidth)	linewidth / bandwidth used for sensitivity	Pol.	Pol. SNR		
Line	1.00 mJy	0.1	1 km/s	11.23 mJy, 1.8 K	0.0002	0.0%	0.0		
Continuum	1.00 mJy	11.1				0.0%	0.0		
Dynamic range	Dynamic range (cont flux/line rms): 0.1								

1 Tuning

Tuning	Target	Rep. Freq.	RMS	RMS
		Sky GHz	(Rep. Freq.)	Achieved
1	1,2,3,4,5,6,7,8,9,1	217.924273	90.14 µJy, 14.5 mK	90.14 uJy - 90.54 uJy

Note that one or more of the S/N estimates are < 3. Please double-check the RMS and/or line fluxes entered and/or address the issue below. Note that the bandwidth used for sensitivity is larger than 1/3 of the linewidth.

The S/N achieved for a resolution element that allows the line to be resolved will be lower than that reported.

- Justification for requested RMS and resulting S/N (and for spectral lines the bandwidth selected) for the sensitivity calculation.

A sensitivity of 100 µJy at 1.37 mm wavelength delivers a mass sensitivity of nearly 0.1 Msun using dust opacities form Ossenkopf & Henning with beta=2 and dust temperature of 17 K at 7 kpc, the maximum distance to our sources. This would allow to safely detect 0.3 M_sun sources, while our total source masses have a cutoff of 500 M_sun, so even with severe fragmentation we would discover all the fragments. With this, we will be able to sample the peak of a typical CMF in a low/intermediate-mass SF region like Aquila. Although in some cases we may be limited by the dynamic range, simulations are very successful in recovering all scales, as shown in Fig.2 in the proposal. Also, we found from past experience that self-cal can improve the dynamic range considerably.

For the lines maps, a spectral resolution of 0.5 km/s and a spatial resolution of 0.4" give a 1 sigma rms of 1.4 K, which is as shown in Fig. 2, is sufficient to analyze the line emission even in weaker cores, and could be further enhanced by spectral smoothing. Fig. 2 is based on real ALMA observations of a high-mass star-forming region. We will not be able to analyze the lines of all sources in that manner, but we expect that we will be able to do the analysis in enough sources to be worthwhile, and use 13CO in the ones weaker in H2CO or CH3CN.

-Justification of the chosen angular resolution and largest angular scale for the source(s) in this Science Goal.

We would like to get a resolution of about 0.4" to achieve a resolution of at least 2500 AU at all distances considered. This would allow to resolve the clusters sufficiently to determine the CMF, find large toroid-like rotating structures or circumbinary disks, and detect disk candidates for further studies. The largest scale is given by the desire to model the density and temperature structure on the clump scale, and to fully characterize the clumpßlevel

The configuration proposed by the OT for these requirements (C4-C1-ACA) has been verified to provide enough time for large programs to host our observations, if the sources can be spread out in an interval of +/- 3 h, as stated by the knowledge base, and verified by a helpdesk ticket. Thus, we do not exceed the time limit per LST interval for large programs, and our program poses no criticality in terms of scheduling feasibility for both requested configurations.

Correlator Comments

Note that the spectral resolution is larger than 1/3 of the the spectral line width and that your line may not be resolved.

Justification of the correlator set-up with particular reference to the number of spectral resolution elements per line width.

SG : 1 of 6 High-mass stars 0 cluster 11 Band 6

cience Goal Parameters									
Ang.Res.	LAS	Requested RMS	RMS Bandwidth	Rep.Freq.	Cont. RMS				
0.4000"	30.0"	100 μJy, 16.1 mK	5158.985 km/s, 3.7 GHz	217.925000 GHz	92.932 μJy, 15 mK				

Use of 12m Array (43 antennas)

t_total(all configs)	t_science(C43-4)	t_total(C43-1)	Imaged area	#12m pointing	12m Mosaic spacing	HPBW	t_per_point	Data Vol	Avg. Data Rate
4.7 h	1.9 h	1.2 h	8.9 "	36	offset	26.7 "	217.4 s	544.7 GB	39.8 MB/s
Use of ACA 7m Array (1	0 antennas) and TP Arr	av							

Use of ACA /m Array (10 antennas) and TP Array

t_total(ACA)	t_total(7m)	t_total(TP)	Imaged area	#7m pointing	7m Mosaic spacing	HPBW	t_per_point	Data Vol	Avg. Data Rate
8.3 h	8.3 h	0.0 h	15.3 "	36	offset	45.8 "	483.2 s	21.3 GB	0.9 MB/s

Spectral Setup : Spectral Line

BB	Center Freq Rest GHz	spw name	Eff #Ch p.p.	Bandwidth	Resolution	Vel. Bandwidth	Vel. Res.	Res. El. per FWHM
1	217.925000	Band 1	3840	1875.00 MHz	0.977 MHz	2579.5 km/s	1.343 km/s	1
2	220.000000	Band 2	3840	1875.00 MHz	0.977 MHz	2555.2 km/s	1.331 km/s	1
3	218.300000	H2CO lines	3840	468.75 MHz	244.141 kHz	643.8 km/s	0.335 km/s	3
4	220.600000	13CO and CH3CN	3840	468.75 MHz	244.141 kHz	637.1 km/s	0.332 km/s	3

36 Targets

No.	Target	Ra,Dec (ICRS) V,def,frameORz				
1	1-641028	10:23:20, -57:52:31	1.00 km/s,lsrk,RADIO			
2	2-641210	10:24:08, -57:46:31	1.00 km/s,lsrk,RADIO			
3	3-638752	10:18:59, -57:42:22	1.00 km/s,lsrk,RADIO			
4	4-646022	10:33:30, -58:55:20	1.00 km/s,lsrk,RADIO			
5	5-645113	10:30:33, -58:53:51	1.00 km/s,lsrk,RADIO			
6	6-645152	10:30:46, -58:52:21	1.00 km/s,lsrk,RADIO			
7	7-644237	10:31:15, -58:03:57	1.00 km/s,lsrk,RADIO			
8	8-G281.9780-01.3	10:05:31, -57:19:50	1.00 km/s,lsrk,RADIO			
9	9-638974	10:18:01, -58:00:41	1.00 km/s,lsrk,RADIO			
10	10-641440	10:24:22, -57:49:41	1.00 km/s,lsrk,RADIO			
11	11-637349	10:16:57, -57:24:25	1.00 km/s,lsrk,RADIO			
12	12-637550	10:17:16, -57:26:27	1.00 km/s,lsrk,RADIO			
13	13-645690	10:35:57, -58:08:15	1.00 km/s,lsrk,RADIO			
14	14-633219	10:09:26, -56:43:46	1.00 km/s,lsrk,RADIO			
15	15-641469	10:24:10, -57:52:34	1.00 km/s,lsrk,RADIO			
16	16-646390	10:29:50, -59:58:26	1.00 km/s,lsrk,RADIO			
17	17-641310	10:24:27, -57:45:20	1.00 km/s,lsrk,RADIO			
18	18-631754	10:04:55, -56:46:36	1.00 km/s,lsrk,RADIO			
19	19-633013	10:06:34, -57:11:46	1.00 km/s,lsrk,RADIO			
20	20-641463	10:24:32, -57:47:49	1.00 km/s,lsrk,RADIO			
21	21-647452	10:37:37, -58:47:01	1.00 km/s,lsrk,RADIO			
22	22-641402	10:24:13, -57:50:36	1.00 km/s,lsrk,RADIO			
23	23-639498	10:19:28, -57:56:17	1.00 km/s,lsrk,RADIO			
24	24-638718	10:17:33, -57:58:44	1.00 km/s,lsrk,RADIO			
25	25-644284	10:31:29, -58:02:19	1.00 km/s,lsrk,RADIO			
26	26-647876	10:38:41, -58:44:37	1.00 km/s,lsrk,RADIO			
27	27-644273	10:31:24, -58:03:03	1.00 km/s,lsrk,RADIO			
28	28-640046	10:20:14, -58:03:06	1.00 km/s,lsrk,RADIO			
29	29-641014	10:24:03, -57:43:17	1.00 km/s,lsrk,RADIO			
30	30-G282.2988-00	10:10:00, -57:02:07	1.00 km/s,lsrk,RADIO			
31	31-632469	10:03:40, -57:26:37	1.00 km/s,lsrk,RADIO			
32	32-646708	10:35:26, -58:55:51	1.00 km/s,lsrk,RADIO			
33	33-G283.9146-01	10:18:49, -58:10:11	1.00 km/s,lsrk,RADIO			
34	34-G286.2086+00	10:38:32, -58:19:14	1.00 km/s,lsrk,RADIO			
35	35-640076	10:20:15, -58:03:55	1.00 km/s,lsrk,RADIO			
36	36-640255	10:20:21, -58:08:30	1.00 km/s,lsrk,RADIO			

Expected Source Properties

	Peak Flux	SNR	Linewidth	RMS (over 1/3 linewidth)	linewidth / bandwidth used for sensitivity	Pol.	Pol. SNR			
Line	1.00 mJy	0.1	1 km/s	11.56 mJy, 1.9 K	0.0002	0.0%	0.0			
Continuum	1.00 mJy	10.8				0.0%	0.0			
Dynamic range (cont flux/line rms): 0.1										

1 Tuning

Tuning	Target	Rep. Freq.	RMS	RMS
		Sky GHz	(Rep. Freq.)	Achieved
1	1,2,3,4,5,6,7,8,9,1	217.924273	93.01 μJy, 15.0 mK	93.01 uJy - 93.41 uJy

 Cont. Bandwidth
 Poln.Prod.
 Non-standard mode

 3.750 GHz
 XX,YY
 No

Note that one or more of the S/N estimates are < 3. Please double-check the RMS and/or line fluxes entered and/or address the issue below. Note that the bandwidth used for sensitivity is larger than 1/3 of the linewidth.

The S/N achieved for a resolution element that allows the line to be resolved will be lower than that reported.

- Justification for requested RMS and resulting S/N (and for spectral lines the bandwidth selected) for the sensitivity calculation.

A sensitivity of 100 µJy at 1.37 mm wavelength delivers a mass sensitivity of nearly 0.1 Msun using dust opacities form Ossenkopf & Henning with beta=2 and dust temperature of 17 K at 7 kpc, the maximum distance to our sources. This would allow to safely detect 0.3 M_sun sources, while our total source masses have a cutoff of 500 M_sun, so even with severe fragmentation we would discover all the fragments. With this, we will be able to sample the peak of a typical CMF in a low/intermediate-mass SF region like Aquila. Although in some cases we may be limited by the dynamic range, simulations are very successful in recovering all scales, as shown in Fig.2 in the proposal. Also, we found from past experience that self-cal can improve the dynamic range considerably.

For the lines maps, a spectral resolution of 0.5 km/s and a spatial resolution of 0.4" give a 1 sigma rms of 1.4 K, which is as shown in Fig. 2, is sufficient to analyze the line emission even in weaker cores, and could be further enhanced by spectral smoothing. Fig. 2 is based on real ALMA observations of a high-mass star-forming region. We will not be able to analyze the lines of all sources in that manner, but we expect that we will be able to do the analysis in enough sources to be worthwhile, and use 13CO in the ones weaker in H2CO or CH3CN.

-Justification of the chosen angular resolution and largest angular scale for the source(s) in this Science Goal.

We would like to get a resolution of about 0.4" to achieve a resolution of at least 2500 AU at all distances considered. This would allow to resolve the clusters sufficiently to determine the CMF, find large toroid-like rotating structures or circumbinary disks, and detect disk candidates for further studies. The largest scale is given by the desire to model the density and temperature structure on the clump scale, and to fully characterize the clumpßlevel

The configuration proposed by the OT for these requirements (C4-C1-ACA) has been verified to provide enough time for large programs to host our observations, if the sources can be spread out in an interval of +/- 3 h, as stated by the knowledge base, and verified by a helpdesk ticket. Thus, we do not exceed the time limit per LST interval for large programs, and our program poses no criticality in terms of scheduling feasibility for both requested configurations.

Correlator Comments

Note that the spectral resolution is larger than 1/3 of the the spectral line width and that your line may not be resolved.

Justification of the correlator set-up with particular reference to the number of spectral resolution elements per line width.

SG : 1 of 6 High-mass stars 0 cluster 12 Band 6

Science Goal Parameters Ang.Res. LAS 0.4000" 30.0" Cont. Bandwidth Poln.Prod. Non-standard mode Requested RMS RMS Bandwidth Rep.Freq. Cont. RMS 5158.964 km/s, 3.7 GHz 217.925000 GHz 93.707 μJy, 15.1 mK 100 µJy, 16.1 mK 3.750 GHz XX,YY No Use of 12m Array (43 antennas) t_total(all configs) t_science(C43-4) t_total(C43-1) Imaged area #12m pointing 12m Mosaic spacing HPBW t_per_point Data Vol Avg. Data Rate 2.1 h 1.2 h 8.9 " 26.7 " 217.4 s 582.4 GB 40.0 MB/s 4.9 h 39 offset

Use of ACA 7m Array (10 antennas) and TP Array

t_total(ACA) t_total	[7m] t_total(TP)	Imaged area	#7m pointing	7m Mosaic spacing	HPBW	t_per_point	Data Vol	Avg. Data Rate
8.7 h 8.7	h 0.0 h	15.3 "	39	offset	45.8 "	493.2 s	22.8 GB	0.9 MB/s

Spectral Setup : Spectral Line

BB	Center Freq Rest GHz	spw name	Eff #Ch p.p.	Bandwidth	Resolution	Vel. Bandwidth	Vel. Res.	Res. El. per FWHM
1	217.925000	Band 1	3840	1875.00 MHz	0.977 MHz	2579.5 km/s	1.343 km/s	1
2	220.000000	Band 2	3840	1875.00 MHz	0.977 MHz	2555.2 km/s	1.331 km/s	1
3	218.300000	H2CO lines	3840	468.75 MHz	244.141 kHz	643.8 km/s	0.335 km/s	3
4	220.600000	13CO and CH3CN	3840	468.75 MHz	244.141 kHz	637.1 km/s	0.332 km/s	3

39 Targets

1 1:658966 10:57:43, -59:44:57 1.00 km/s, Isrk, RADIO 2 2:667888 11:15:06, -61:17:57 1.00 km/s, Isrk, RADIO 4 4:665815 11:12:24, -61:26:18 1.00 km/s, Isrk, RADIO 5 5:667312 11:15:11, -61:16:59 1.00 km/s, Isrk, RADIO 6 6:675564 11:36:02, -61:58:30 1.00 km/s, Isrk, RADIO 7 7:654025 10:45:09, -59:48:23 1.00 km/s, Isrk, RADIO 9 9:672346 11:25:43, -62:10:49 1.00 km/s, Isrk, RADIO 10 10:664813 11:06:33, -61:44:13 1.00 km/s, Isrk, RADIO 11 11:652455 10:46:52, -59:53:30 1.00 km/s, Isrk, RADIO 12 12:268980 10:56:19, -60:07:36 1.00 km/s, Isrk, RADIO 13 13:667671 11:15:02, -61:13:20 1.00 km/s, Isrk, RADIO 14 14:665718 11:12:21, -60:52:59 1.00 km/s, Isrk, RADIO 15 15:65833 1:05:73, -59:53:30 1.00 km/s, Isrk, RADIO 16 16:658015 10:53:44, -59:53:53 1.00 km/s, Isrk, RADIO 15 15:6666610	No.	Target	Ra,Dec (ICRS)	V,def,frameORz
2 2-2667888 11:15:06,-61:17:57 1.00 km/s,lsrk,RADIO 3 3-673961 11:32:44,-61:26:18 1.00 km/s,lsrk,RADIO 5 5-667912 11:12:35,-60:53:30 1.00 km/s,lsrk,RADIO 6 6-675564 11:36:02,-61:58:30 1.00 km/s,lsrk,RADIO 7 7-654025 10:45:09,-59:48:23 1.00 km/s,lsrk,RADIO 8 B-G294,5117-01.6 11:35:32,-63:14:42 1.00 km/s,lsrk,RADIO 9 9-672346 11:26:34,-62:10:49 1.00 km/s,lsrk,RADIO 10 10-664813 11:10:63:3,-61:32:0 1.00 km/s,lsrk,RADIO 11 11-655455 10:46:52,-59:53:30 1.00 km/s,lsrk,RADIO 12 12-658980 10:56:19,-60:07:36 1.00 km/s,lsrk,RADIO 13 13-667671 11:10:22,-61:32:0 1.00 km/s,lsrk,RADIO 14 14-665718 11:12:21,-60:52:59 1.00 km/s,lsrk,RADIO 15 15-659353 10:57:25,-61:19:50 1.00 km/s,lsrk,RADIO 16 16-658015 10:57:25,-61:19:50 1.00 km/s,lsrk,RADIO 17 17-661269 10:57:25,-61:19:50	1	1-658966	10:57:43, -59:44:57	1.00 km/s,lsrk,RADIO
3 3-673961 11:32:44, -61:26:18 1.00 km/s, lsrk, RADIO 4 4-665815 11:12:35, -60:53:30 1.00 km/s, lsrk, RADIO 5 5-667912 11:15:11, -61:16:59 1.00 km/s, lsrk, RADIO 7 7-654025 10:45:09, -59:48:23 1.00 km/s, lsrk, RADIO 7 7-654025 10:45:09, -59:48:23 1.00 km/s, lsrk, RADIO 9 9-672346 11:35:32, -63:14:42 1.00 km/s, lsrk, RADIO 10 10-664813 11:05:33, -61:44:13 1.00 km/s, lsrk, RADIO 11 1-655455 10:46:52, -59:53:30 1.00 km/s, lsrk, RADIO 12 12-658980 10:56:19, -60:07:36 1.00 km/s, lsrk, RADIO 13 13-667671 11:12:21, -60:52:59 1.00 km/s, lsrk, RADIO 14 14-665718 11:22:1, -60:52:59 1.00 km/s, lsrk, RADIO 15 15-659353 10:57:25, -61:19:50 1.00 km/s, lsrk, RADIO 16 16-658015 10:52:59 1.00 km/s, lsrk, RADIO 17 17-661269 10:52:59 1.00 km/s, lsrk, RADIO 18 19-659152 10:56:37,	2	2-667888	11:15:06, -61:17:57	1.00 km/s,lsrk,RADIO
4 4 4 4 4 4 4 4 4 4 6667912 11.15:11.61:16:59 1.00 km/s,lsrk,RADIO 5 5 6667912 11.15:11.61:16:59 1.00 km/s,lsrk,RADIO 6 6 675564 11.36:02.61:58:30 1.00 km/s,lsrk,RADIO 7 7 7 654025 10.45:09.59:48:23 1.00 km/s,lsrk,RADIO 9 9 9 9 72346 11.25:43.62:10:49 1.00 km/s,lsrk,RADIO 10 10.664813 11.06:33.61:44:13 1.00 km/s,lsrk,RADIO 11 11.655455 10.46:52.59:53:30 1.00 km/s,lsrk,RADIO 12 12.26:58980 10.05:51.9.60:07:36 1.00 km/s,lsrk,RADIO 13 13.667671 11.15:02.61:13:20 1.00 km/s,lsrk,RADIO 15 15.65:6353 1.00 km/s,lsrk,RADIO 15 15.65:637 1.00 km/s,lsrk,RADIO 16 16.66:8015 10.53:34.59:53:53 1.00 km/s,lsrk,RADIO 16 16.66:8015 10.55:7.60:02:07 1.00 km/s,lsrk,RADIO 12 12.66:08:66 10.59:17.60:32:12 1.00 km/s,lsrk,RADIO 12 12.66:08:66 10.59:17.60:32:12 1.00 km/s,lsrk,RADIO <t< td=""><td>3</td><td>3-673961</td><td>11:32:44, -61:26:18</td><td>1.00 km/s,lsrk,RADIO</td></t<>	3	3-673961	11:32:44, -61:26:18	1.00 km/s,lsrk,RADIO
5 5 5 5 5667912 11:15:11, -61:16:59 1.00 km/s, Isrk, RADIO 6 6-675564 11:36:02, -61:58:30 1.00 km/s, Isrk, RADIO 7 7-654025 10:45:09, -59:48:23 1.00 km/s, Isrk, RADIO 9 9-672346 11:25:43, -62:10:49 1.00 km/s, Isrk, RADIO 10 10-664813 11:26:33, -61:44:13 1.00 km/s, Isrk, RADIO 11 11-655455 10:46:52, -59:53:30 1.00 km/s, Isrk, RADIO 12 12:2658980 10:56:19, -60:07:36 1.00 km/s, Isrk, RADIO 13 13:667671 11:15:02, -61:13:20 1.00 km/s, Isrk, RADIO 14 14-665718 11:12:21, -60:52:59 1.00 km/s, Isrk, RADIO 15 15-659353 10:57:37, -59:58:39 1.00 km/s, Isrk, RADIO 16 16-658015 10:57:25, -61:19:50 1.00 km/s, Isrk, RADIO 17 17-661269 10:57:25, -61:19:50 1.00 km/s, Isrk, RADIO 19 19-659152 10:56:57, -60:02:07 1.00 km/s, Isrk, RADIO 20 20-666114 11:11:34, -61:21:13 1.00 km/s, Isrk, RADIO	4	4-665815	11:12:35, -60:53:30	1.00 km/s,lsrk,RADIO
6 6 6 7 7 7 7 7 7 8 7 7 7 7 7 8 7 7 7 10 5 10 5 10 5 10 5 10 5 10 5 10 10 10 10 10 10 10 10 10 6 11 12 12 12 12 12 12 6 11 11 15 5 5 5 10 0 Mm/s, Isrk, RADIO 12 12 2 5 9 10 0 Mm/s, Isrk, RADIO 13 13 6 7 11 15 10 5 10 Mm/s, Isrk, RADIO 14 14 6 5 10 10 Mm/s, Isrk, RADIO 15 15 5 9 10 Mm/s, Isrk, RADIO 10 Mm/s, Isrk, RADIO 16<	5	5-667912	11:15:11, -61:16:59	1.00 km/s,lsrk,RADIO
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 654025 1.00 km/s, Isrk, RADIO 8 8 6294.5117-01.6 11.35:32.63.14:42 1.00 km/s, Isrk, RADIO 10 10 10 664813 11.25:43, 62:10:49 1.00 km/s, Isrk, RADIO 10 10-664813 11.26:53, 60:07:36 1.00 km/s, Isrk, RADIO 13 13-667671 11.15:02, 61:13:20 1.00 km/s, Isrk, RADIO 13 13-667671 11.15:02, 61:13:20 1.00 km/s, Isrk, RADIO 16 16-658015 10:53:44, 59:53:53 1.00 km/s, Isrk, RADIO 16 16-6568015 10:53:44, 59:53:53 1.00 km/s, Isrk, RADIO 16 16-6568015 10:53:44, 59:53:53 1.00 km/s, Isrk, RADIO 17 17-661269 10:57:37, 60:20:07 1.00 km/s, Isrk, RADIO 18 18-666100 11:11:34, 61:21:13 1.00 km/s, Isrk, RADIO 18 18-666100 11:11:13, 61:20:16 1.00 km/s, Isrk, RADIO 22 22-666989 11:41:6, 61:06:59 1.00 km/s, Isrk, RADIO 22	6	6-675564	11:36:02, -61:58:30	1.00 km/s,lsrk,RADIO
8 B: G294.5117-01.6 11:35:32, -63:14:42 1.00 km/s, Isrk, RADIO 9 9-672346 11:25:43, -62:10:49 1.00 km/s, Isrk, RADIO 10 10-664813 11:06:33, -61:44:13 1.00 km/s, Isrk, RADIO 11 11-655455 10:46:52, -59:53:30 1.00 km/s, Isrk, RADIO 12 12-658960 10:56:19, -60:07:36 1.00 km/s, Isrk, RADIO 13 13-667671 11:15:02, -61:32:20 1.00 km/s, Isrk, RADIO 14 14-665718 11:12:21, -60:52:59 1.00 km/s, Isrk, RADIO 15 15-659353 10:57:34, -59:53:33 1.00 km/s, Isrk, RADIO 16 16-6568015 10:53:44, -59:53:53 1.00 km/s, Isrk, RADIO 17 17-661269 10:57:25, -61:19:50 1.00 km/s, Isrk, RADIO 19 19-659152 10:56:57, -60:20:71 1.00 km/s, Isrk, RADIO 20 20-666114 11:11:39, -61:20:16 1.00 km/s, Isrk, RADIO 21 22-660866 10:59:17, -60:34:12 1.00 km/s, Isrk, RADIO 22 22-660303 10:56:33, -60:05:16 1.00 km/s, Isrk, RADIO 23	7	7-654025	10:45:09, -59:48:23	1.00 km/s,lsrk,RADIO
9 100 100 10 10 664813 11 10 33 10 0 km/s, Isrk, RADIO 12 12 655455 10 60 100 km/s, Isrk, RADIO 13 13 667671 11 15 100 km/s, Isrk, RADIO 14 14 665718 11 12 100 km/s, Isrk, RADIO 15 15 659353 10 57:25, 61:19:50 100 km/s, Isrk, RADIO 16 16 658015 10:57:25, 61:19:50 100 km/s, Isrk, RADIO 19 19 19 19 19 19 19 11:13:24, 61:21:13 100 km/s, Isrk, RADIO 21 26 10 11:11:39, 61:20:16 100 km/s, Isrk, RADIO 22 26 66899	8	8-G294.5117-01.6	11:35:32, -63:14:42	1.00 km/s,lsrk,RADIO
10 10:664813 11:06:33, -61:44:13 1.00 km/s, lsrk, RADIO 11 11:1655455 10:46:52, 59:53:30 1.00 km/s, lsrk, RADIO 12 12:658980 10:56:19, -60:07:36 1.00 km/s, lsrk, RADIO 13 13:667671 11:15:02, -61:13:20 1.00 km/s, lsrk, RADIO 14 14:665718 11:12:21, -60:52:59 1.00 km/s, lsrk, RADIO 15 15:6599353 10:57:37, -59:58:39 1.00 km/s, lsrk, RADIO 16 16:658015 10:53:44, -59:53:53 1.00 km/s, lsrk, RADIO 17 17:661269 10:57:25, -61:19:50 1.00 km/s, lsrk, RADIO 18 18:666100 11:11:34, -61:21:13 1.00 km/s, lsrk, RADIO 20 20:666114 11:11:39, -61:20:16 1.00 km/s, lsrk, RADIO 21 21:660866 10:59:17, -60:34:12 1.00 km/s, lsrk, RADIO 22 22:66699 11:14:16, -61:06:59 1.00 km/s, lsrk, RADIO 23 23:659030 10:56:33, -60:516 1.00 km/s, lsrk, RADIO 24 24:27:37.4929-00 10:44:19, -61:18:27 1.00 km/s, lsrk, RADIO 25	9	9-672346	11:25:43, -62:10:49	1.00 km/s,lsrk,RADIO
11 11 11.655455 10.46:52, -59:53:30 1.00 km/s, Isrk, RADIO 12 12-658980 10.56:19, -60:07:36 1.00 km/s, Isrk, RADIO 13 13-667671 11.15:02, -61:13:20 1.00 km/s, Isrk, RADIO 14 14-665718 11:12:21, -60:52:59 1.00 km/s, Isrk, RADIO 15 15-659353 10:57:37, -59:58:39 1.00 km/s, Isrk, RADIO 16 16-658015 10:53:44, -59:53:53 1.00 km/s, Isrk, RADIO 17 17-661269 10:57:25, -61:19:50 1.00 km/s, Isrk, RADIO 19 19-659152 10:56:57, -60:02:07 1.00 km/s, Isrk, RADIO 20 20-666114 11:11:39, -61:20:16 1.00 km/s, Isrk, RADIO 21 22-666989 11:14:16, -61:06:59 1.00 km/s, Isrk, RADIO 22 22-66699 10:56:37, -60:34:12 1.00 km/s, Isrk, RADIO 23 23-659030 10:56:33, -60:51:6 1.00 km/s, Isrk, RADIO 24 24-6287,492:e90 10:41:16:27 1.00 km/s, Isrk, RADIO 25 25-666242 11:12:01, -61:18:27 1.00 km/s, Isrk, RADIO 2	10	10-664813	11:06:33, -61:44:13	1.00 km/s,lsrk,RADIO
12 12-658980 10:56:19,-60:7:36 1.00 km/s, lsrk, RADIO 13 13:667671 11:15:02,-61:13:20 1.00 km/s, lsrk, RADIO 14 14:665718 11:12:21,-60:52:59 1.00 km/s, lsrk, RADIO 15 15:659353 10:57:37,-59:58:39 1.00 km/s, lsrk, RADIO 16 16:658015 10:53:44,-59:53:53 1.00 km/s, lsrk, RADIO 17 17:661269 10:57:25,-61:19:50 1.00 km/s, lsrk, RADIO 18 18:66100 11:11:34,-61:21:13 1.00 km/s, lsrk, RADIO 20 20:666114 11:11:39,-61:20:16 1.00 km/s, lsrk, RADIO 21 22:666989 11:14:16,-61:06:59 1.00 km/s, lsrk, RADIO 22 22:666989 11:14:16,-61:06:59 1.00 km/s, lsrk, RADIO 23 23:659030 10:64:34,-59:35:04 1.00 km/s, lsrk, RADIO 24 22:86789 11:15:08,-61:16:57 1.00 km/s, lsrk, RADIO 25 25:666242 11:12:01,-61:18:27 1.00 km/s, lsrk, RADIO 26 26:667551 11:14:02,-63:27:59 1.00 km/s, lsrk, RADIO 27:26:6101 11:11:39,-	11	11-655455	10:46:52, -59:53:30	1.00 km/s,lsrk,RADIO
13 13:3-667671 11:15:02,-61:13:20 1.00 km/s,lsrk,RADIO 14 14:665718 11:12:21,-60:52:59 1.00 km/s,lsrk,RADIO 15 15:659353 10:57:37,-55:86:39 1.00 km/s,lsrk,RADIO 16 16:659353 10:57:37,-55:86:39 1.00 km/s,lsrk,RADIO 17 17:61269 10:57:25,-61:19:50 1.00 km/s,lsrk,RADIO 18 18:666100 11:11:34,-61:21:13 1.00 km/s,lsrk,RADIO 20:0-666114 11:11:39,-61:20:16 1.00 km/s,lsrk,RADIO 21:2-660866 10:59:17,-60:34:12 1.00 km/s,lsrk,RADIO 22:2-66699 11:14:16,-61:06:59 1.00 km/s,lsrk,RADIO 22:2-66699 11:14:14,-61:06:59 1.00 km/s,lsrk,RADIO 22:2-666242 11:20:1,-61:18:27 1.00 km/s,lsrk,RADIO 25:2-5666242 11:12:01,-61:18:27 1.00 km/s,lsrk,RADIO 26:2-667879 11:15:08,-61:16:57 1.00 km/s,lsrk,RADIO 27:2-666101 11:11:39,-61:11:37 1.00 km/s,lsrk,RADIO 28:2-667551 11:14:49,-61:11:37 1.00 km/s,lsrk,RADIO 29:2-9678141 11:40:29,-63:27:59 1.00 km/s,lsrk,RADIO	12	12-658980	10:56:19, -60:07:36	1.00 km/s,lsrk,RADIO
14 14-665718 11:12:21,-60:52:59 1.00 km/s,lsrk,RADIO 15 15-659353 10:57:37,-59:58:39 1.00 km/s,lsrk,RADIO 16 16-6658015 10:53:34,-59:53:53 1.00 km/s,lsrk,RADIO 17 17-661269 10:57:25,-61:19:50 1.00 km/s,lsrk,RADIO 18 18-666100 11:11:34,-61:21:13 1.00 km/s,lsrk,RADIO 20 20-666114 11:11:39,-61:20:16 1.00 km/s,lsrk,RADIO 21 22-666989 11:14:16,-61:06:59 1.00 km/s,lsrk,RADIO 22 22-666989 10:56:37,-60:34:12 1.00 km/s,lsrk,RADIO 23 23-659030 10:56:33,-60:516 1.00 km/s,lsrk,RADIO 24 2287,4929-00 10:46:34,-59:35:04 1.00 km/s,lsrk,RADIO 25 25-666242 11:12:01,-61:18:27 1.00 km/s,lsrk,RADIO 26 26-667879 11:15:08,-61:16:57 1.00 km/s,lsrk,RADIO 28 26-67551 11:14:159,-61:11:37 1.00 km/s,lsrk,RADIO 29 29-678141 11:40:29,-63:27:59 1.00 km/s,lsrk,RADIO 21 22-2293.5607-00 11	13	13-667671	11:15:02, -61:13:20	1.00 km/s,lsrk,RADIO
15 115-659353 10:57:27, -59:58:39 1.00 km/s, lsrk, RADIO 16 16-658015 10:53:44, -59:53:53 1.00 km/s, lsrk, RADIO 17 17-661269 10:57:25, -61:19:50 1.00 km/s, lsrk, RADIO 18 18-66100 11:11:34, -61:21:13 1.00 km/s, lsrk, RADIO 19 19-659152 10:56:57, -60:02:07 1.00 km/s, lsrk, RADIO 20 20-666114 11:11:39, -61:20:16 1.00 km/s, lsrk, RADIO 21 22-666989 11:14:16, -61:06:59 1.00 km/s, lsrk, RADIO 22 22-666989 11:14:16, -61:06:59 1.00 km/s, lsrk, RADIO 23 23-659030 10:56:33, -60:05:16 1.00 km/s, lsrk, RADIO 24 228-667939 11:15:08, -61:16:57 1.00 km/s, lsrk, RADIO 25 25-666242 11:11:39, -61:19:41 1.00 km/s, lsrk, RADIO 27 27-666101 11:11:39, -61:19:41 1.00 km/s, lsrk, RADIO 28 28-667551 11:14:59, -61:11:37 1.00 km/s, lsrk, RADIO 29 29-678141 11:40:29, -63:27:59 1.00 km/s, lsrk, RADIO 30	14	14-665718	11:12:21, -60:52:59	1.00 km/s,lsrk,RADIO
16 16:658015 10:53:44, -59:53:53 1.00 km/s, lsrk, RADIO 17 17:661269 10:57:25, -61:19:50 1.00 km/s, lsrk, RADIO 18 18:666100 11:11:34, -61:21:13 1.00 km/s, lsrk, RADIO 19 19:659152 10:56:57, -60:02:07 1.00 km/s, lsrk, RADIO 20 20:666114 11:11:34, -61:21:13 1.00 km/s, lsrk, RADIO 21 21:660866 10:59:17, -60:34:12 1.00 km/s, lsrk, RADIO 22 22:66699 11:14:16, -61:06:59 1.00 km/s, lsrk, RADIO 23 23:659030 10:64:34, -59:35:04 1.00 km/s, lsrk, RADIO 24 24:26287.4929:00 10:44:34, -59:35:04 1.00 km/s, lsrk, RADIO 25 25:666242 11:12:01, -61:18:27 1.00 km/s, lsrk, RADIO 26 28:667551 11:14:59, -61:11:37 1.00 km/s, lsrk, RADIO 27 26:66241 11:12:01, -61:13:27 1.00 km/s, lsrk, RADIO 28 28:667551 11:14:59, -61:13:7 1.00 km/s, lsrk, RADIO 29 29:678141 11:40:29, -63:27:59 1.00 km/s, lsrk, RADIO 30:30:G2287.37	15	15-659353	10:57:37, -59:58:39	1.00 km/s,lsrk,RADIO
17 17-661269 10:57:25, -61:19:50 1.00 km/s, Isrk, RADIO 18 18-666100 11:11:34, -61:21:13 1.00 km/s, Isrk, RADIO 19 19-659152 10:56:57, -60:02:07 1.00 km/s, Isrk, RADIO 20 20-666114 11:11:39, -61:20:16 1.00 km/s, Isrk, RADIO 21 21-660866 10:59:17, -60:34:12 1.00 km/s, Isrk, RADIO 22 22-666989 11:14:16, -61:06:59 1.00 km/s, Isrk, RADIO 23 23-659030 10:56:33, -60:05:16 1.00 km/s, Isrk, RADIO 24 2247, 4929-00 10:44:34, -59:35:04 1.00 km/s, Isrk, RADIO 25 25-666242 11:12:01, -61:18:27 1.00 km/s, Isrk, RADIO 26 26-667879 11:15:08, -61:16:57 1.00 km/s, Isrk, RADIO 28 28-667551 11:14:59, -61:11:37 1.00 km/s, Isrk, RADIO 29 29-678141 11:40:29, -63:27:59 1.00 km/s, Isrk, RADIO 21 22-263.5607-00 11:30:07, -62:03:12 1.00 km/s, Isrk, RADIO 23 22-293.5607-00 11:30:07, -62:03:12 1.00 km/s, Isrk, RADIO <t< td=""><td>16</td><td>16-658015</td><td>10:53:44, -59:53:53</td><td>1.00 km/s,lsrk,RADIO</td></t<>	16	16-658015	10:53:44, -59:53:53	1.00 km/s,lsrk,RADIO
18 18:666100 11:11:34, -61:21:13 1.00 km/s, lsrk, RADIO 19 19-659152 10:56:57, -60:02:07 1.00 km/s, lsrk, RADIO 20 20-666114 11:11:39, -61:20:16 1.00 km/s, lsrk, RADIO 21 21-660866 10:59:17, -60:34:12 1.00 km/s, lsrk, RADIO 22 22-666999 11:14:16, -61:06:59 1.00 km/s, lsrk, RADIO 22 22-666999 10:44:34, -59:35:04 1.00 km/s, lsrk, RADIO 22 25-666242 11:12:01, -61:18:27 1.00 km/s, lsrk, RADIO 22 25-666242 11:12:01, -61:18:27 1.00 km/s, lsrk, RADIO 27 27-666101 11:11:39, -61:19:41 1.00 km/s, lsrk, RADIO 28 28-667551 11:14:02, -63:27:59 1.00 km/s, lsrk, RADIO 29 29-678141 1:40:29, -63:27:59 1.00 km/s, lsrk, RADIO 30 30-G287.8768-01 10:44:17, -60:27:46 1.00 km/s, lsrk, RADIO 31 1667958 11:15:05, -61:09:40 1.00 km/s, lsrk, RADIO 32 32-6293.5607-00 11:30:07, -62:03:12 1.00 km/s, lsrk, RADIO 33 <td>17</td> <td>17-661269</td> <td>10:57:25, -61:19:50</td> <td>1.00 km/s,lsrk,RADIO</td>	17	17-661269	10:57:25, -61:19:50	1.00 km/s,lsrk,RADIO
19 19:659152 10:65:67, -60:2:07 1.00 km/s, lsrk, RADIO 20 20:666114 11:11:39, -61:20:16 1.00 km/s, lsrk, RADIO 21 21:660866 10:59:17, -60:34:12 1.00 km/s, lsrk, RADIO 22 22:660869 11:14:16, -61:06:59 1.00 km/s, lsrk, RADIO 23 23:659030 10:64:34, -59:35:04 1.00 km/s, lsrk, RADIO 24 24:6287.4929:00 10:44:34, -59:35:04 1.00 km/s, lsrk, RADIO 25 25:666242 11:12:01, -61:18:27 1.00 km/s, lsrk, RADIO 26 26:6667879 11:15:08, -61:16:57 1.00 km/s, lsrk, RADIO 27 27:666101 11:11:39, -61:19:41 1.00 km/s, lsrk, RADIO 28 28:667551 11:14:59, -61:11:37 1.00 km/s, lsrk, RADIO 29 29:678141 11:40:29, -63:27:59 1.00 km/s, lsrk, RADIO 30 30:G287.8768-01 10:41:17:27 1.00 km/s, lsrk, RADIO 32 32:G293.5607-00 11:30:07, -62:03:12 1.00 km/s, lsrk, RADIO 33 36:7557 11:15:05, -61:09:40 1.00 km/s, lsrk, RADIO 33 </td <td>18</td> <td>18-666100</td> <td>11:11:34, -61:21:13</td> <td>1.00 km/s,lsrk,RADIO</td>	18	18-666100	11:11:34, -61:21:13	1.00 km/s,lsrk,RADIO
20 20-666114 11:11:39, -61:20:16 1.00 km/s, lsrk, RADIO 21 21-660866 10:59:17, -60:34:12 1.00 km/s, lsrk, RADIO 22 22-666989 11:14:16, -61:06:59 1.00 km/s, lsrk, RADIO 23 23-659030 10:56:33, -60:05:16 1.00 km/s, lsrk, RADIO 24 24-6287, 4929-00 10:44:34, -59:35:04 1.00 km/s, lsrk, RADIO 25 25-666242 11:12:01, -61:18:27 1.00 km/s, lsrk, RADIO 26 26-667879 11:15:08, -61:16:57 1.00 km/s, lsrk, RADIO 27 27-666101 11:11:39, -61:19:41 1.00 km/s, lsrk, RADIO 28 28-667551 11:14:59, -61:11:37 1.00 km/s, lsrk, RADIO 29 29-678141 11:40:29, -63:27:59 1.00 km/s, lsrk, RADIO 20 29-67851 11:15:14, -61:17:27 1.00 km/s, lsrk, RADIO 31 31-667958 11:15:14, -61:17:27 1.00 km/s, lsrk, RADIO 32 32-6293.5607-00 11:30:07, -62:03:12 1.00 km/s, lsrk, RADIO 33 3-667557 11:15:05, -61:09:40 1.00 km/s, lsrk, RADIO 33<	19	19-659152	10:56:57, -60:02:07	1.00 km/s,lsrk,RADIO
11 21-660866 10:59:17, -60:34:12 1.00 km/s, Isrk, RADIO 22 22-666989 11:14:16, -61:06:59 1.00 km/s, Isrk, RADIO 23 23-659030 10:56:33, -60:05:16 1.00 km/s, Isrk, RADIO 24 24-6287,4929-00 10:44:34, -59:35:04 1.00 km/s, Isrk, RADIO 25 25-666242 11:12:01, -61:18:27 1.00 km/s, Isrk, RADIO 26 26-667879 11:15:08, -61:16:57 1.00 km/s, Isrk, RADIO 27 27-666101 11:11:39, -61:19:41 1.00 km/s, Isrk, RADIO 28 28-667551 11:14:02, -63:27:59 1.00 km/s, Isrk, RADIO 29 29-678141 11:40:29, -63:27:59 1.00 km/s, Isrk, RADIO 30 30-G287.8768-01 10:44:17, -60:27:46 1.00 km/s, Isrk, RADIO 31 31-667958 11:15:14, -61:17:27 1.00 km/s, Isrk, RADIO 32 32-6293.5607-00 11:30:07, -62:03:12 1.00 km/s, Isrk, RADIO 33 3667557 11:15:05, -61:09:40 1.00 km/s, Isrk, RADIO 33 3667557 10:45:03, -59:41:09 1.00 km/s, Isrk, RADIO <t< td=""><td>20</td><td>20-666114</td><td>11:11:39, -61:20:16</td><td>1.00 km/s,lsrk,RADIO</td></t<>	20	20-666114	11:11:39, -61:20:16	1.00 km/s,lsrk,RADIO
22 22-666989 11:14:16, -61:06:59 1.00 km/s, lsrk, RADIO 23 23-659030 10:56:33, -60:05:16 1.00 km/s, lsrk, RADIO 24 24:24:27:4929:00 10:44:34, -59:35:04 1.00 km/s, lsrk, RADIO 25 25-666242 11:12:01, -61:18:27 1.00 km/s, lsrk, RADIO 26 26-667879 11:15:08, -61:16:57 1.00 km/s, lsrk, RADIO 27 27-666101 11:11:39, -61:19:41 1.00 km/s, lsrk, RADIO 28 28-667551 11:14:59, -61:11:37 1.00 km/s, lsrk, RADIO 29 29-678141 11:40:29, -63:27:59 1.00 km/s, lsrk, RADIO 29 29-678141 11:40:29, -63:27:59 1.00 km/s, lsrk, RADIO 30 30-G287.8768-01 10:41:17:27 1.00 km/s, lsrk, RADIO 32 32-G293.5607-00 11:30:07, -62:03:12 1.00 km/s, lsrk, RADIO 33 3667557 11:15:14, -61:02:47 1.00 km/s, lsrk, RADIO 33 3667557 10:55:26, -60:09:00 1.00 km/s, lsrk, RADIO 33 3667557 10:55:26, -60:09:00 1.00 km/s, lsrk, RADIO 35 <td>21</td> <td>21-660866</td> <td>10:59:17, -60:34:12</td> <td>1.00 km/s,lsrk,RADIO</td>	21	21-660866	10:59:17, -60:34:12	1.00 km/s,lsrk,RADIO
23 23 659030 10:56:33, -60:05:16 1.00 km/s, lsrk, RADIO 24 24-G287.4929-00 10:44:34, -59:35:04 1.00 km/s, lsrk, RADIO 25 25-666242 11:12:01, -61:18:27 1.00 km/s, lsrk, RADIO 26 26-667879 11:15:08, -61:16:57 1.00 km/s, lsrk, RADIO 27 27-666101 11:11:39, -61:19:41 1.00 km/s, lsrk, RADIO 28 28-667551 11:14:59, -61:11:37 1.00 km/s, lsrk, RADIO 29 29-678141 1.40:29, -63:27:59 1.00 km/s, lsrk, RADIO 30 30-G287.3768-01 10:44:17, -60:27:46 1.00 km/s, lsrk, RADIO 31 31-667958 11:15:14, -61:17:27 1.00 km/s, lsrk, RADIO 32 32-6293.5607-00 11:30:07, -62:03:12 1.00 km/s, lsrk, RADIO 33 3667557 11:15:05, -61:09:40 1.00 km/s, lsrk, RADIO 34 34-653755 10:45:03, -59:41:09 1.00 km/s, lsrk, RADIO 35 35-659110 10:56:26, 60:09:00 1.00 km/s, lsrk, RADIO 36 36-663282 11:03:54, -61:02:45 1.00 km/s, lsrk, RADIO	22	22-666989	11:14:16, -61:06:59	1.00 km/s,lsrk,RADIO
24 224-G287.4929-00 10:44:34, -59:35:04 1.00 km/s, Isrk, RADIO 25 25-666242 11:12:01, -61:18:27 1.00 km/s, Isrk, RADIO 26 26-6667879 11:15:08, -61:16:57 1.00 km/s, Isrk, RADIO 27 27-666101 11:11:39, -61:19:41 1.00 km/s, Isrk, RADIO 28 28-667551 11:14:59, -61:11:37 1.00 km/s, Isrk, RADIO 29 29-678141 11:40:29, -63:27:59 1.00 km/s, Isrk, RADIO 30 30-G287.8768-01 10:44:17, -60:27:46 1.00 km/s, Isrk, RADIO 31 31-667958 11:15:14, -61:17:27 1.00 km/s, Isrk, RADIO 32 32-G293.5607-00 11:30:07, -62:03:12 1.00 km/s, Isrk, RADIO 33 3-667557 11:15:05, -61:09:40 1.00 km/s, Isrk, RADIO 34 34-653755 10:45:03, -59:41:09 1.00 km/s, Isrk, RADIO 35 35-659110 10:56:26, -60:90:00 1.00 km/s, Isrk, RADIO 36 36-663282 11:03:54, -61:02:45 1.00 km/s, Isrk, RADIO 36 36-663282 11:03:54, -61:02:45 1.00 km/s, Isrk, RADIO	23	23-659030	10:56:33, -60:05:16	1.00 km/s,lsrk,RADIO
25 25-666242 11:12:01, -61:18:27 1.00 km/s, lsrk, RADIO 26 26-667879 11:15:08, -61:16:57 1.00 km/s, lsrk, RADIO 27 27-666101 11:11:39, -61:19:41 1.00 km/s, lsrk, RADIO 28 28-667551 11:14:59, -61:11:37 1.00 km/s, lsrk, RADIO 29 29-678141 11:40:29, -63:27:59 1.00 km/s, lsrk, RADIO 30 30-G287.8768-01 10:44:17, -60:27:46 1.00 km/s, lsrk, RADIO 31 31-667958 11:15:14, -61:17:27 1.00 km/s, lsrk, RADIO 32 32-G293.5607-00 11:50:5, -61:09:40 1.00 km/s, lsrk, RADIO 33 3667557 11:15:05, -61:09:40 1.00 km/s, lsrk, RADIO 34 34-653755 10:45:03, -59:41:09 1.00 km/s, lsrk, RADIO 35 35-659110 10:56:26, -60:09:00 1.00 km/s, lsrk, RADIO 36 36-663282 11:03:54, -61:02:45 1.00 km/s, lsrk, RADIO 37 37-658675 10:56:51, -59:29:27 1.00 km/s, lsrk, RADIO 38 38-658675 10:56:51, -59:45:23 1.00 km/s, lsrk, RADIO 39 <td>24</td> <td>24-G287.4929-00</td> <td>10:44:34, -59:35:04</td> <td>1.00 km/s,lsrk,RADIO</td>	24	24-G287.4929-00	10:44:34, -59:35:04	1.00 km/s,lsrk,RADIO
26 26:667879 11:15:08, -61:16:57 1.00 km/s,lsrk,RADIO 27 27-666101 11:11:39, -61:19:41 1.00 km/s,lsrk,RADIO 28 28-667551 11:14:59, -61:19:41 1.00 km/s,lsrk,RADIO 29 29-678141 11:40:29, -63:27:59 1.00 km/s,lsrk,RADIO 30 30-G287.8768-01 10:41:17, -60:27:46 1.00 km/s,lsrk,RADIO 31 31-667958 11:15:14, -61:17:27 1.00 km/s,lsrk,RADIO 32 32-6293.5607-00 11:30:07, -62:03:12 1.00 km/s,lsrk,RADIO 33 33-667557 11:15:05, -61:09:40 1.00 km/s,lsrk,RADIO 34 34-653755 10:45:03, -59:41:09 1.00 km/s,lsrk,RADIO 35 35-659110 10:56:26, -60:09:00 1.00 km/s,lsrk,RADIO 36 36-663282 11:03:54, -61:02:45 1.00 km/s,lsrk,RADIO 36 36-65875 10:55:26, -69:29:27 1.00 km/s,lsrk,RADIO 37 37-658675 10:56:26, -69:92:45 1.00 km/s,lsrk,RADIO 38 38-658675 10:56:51, -59:45:23 1.00 km/s,lsrk,RADIO 39 39-661786 <td>25</td> <td>25-666242</td> <td>11:12:01, -61:18:27</td> <td>1.00 km/s,lsrk,RADIO</td>	25	25-666242	11:12:01, -61:18:27	1.00 km/s,lsrk,RADIO
27 27-666101 11:11:39, -61:19:41 1.00 km/s, Isrk, RADIO 28 28-667551 11:14:59, -61:11:37 1.00 km/s, Isrk, RADIO 29 29-678141 11:40:29, -63:27:59 1.00 km/s, Isrk, RADIO 30 30-G287.8768-01 10:44:17, -60:27:46 1.00 km/s, Isrk, RADIO 31 31-667958 11:15:14, -61:17:27 1.00 km/s, Isrk, RADIO 32 32-623.5607-00 11:30:07, -62:03:12 1.00 km/s, Isrk, RADIO 33 36-67557 11:15:05, -61:09:40 1.00 km/s, Isrk, RADIO 34 34-653755 10:45:03, -59:41:09 1.00 km/s, Isrk, RADIO 35 35-659110 10:56:26, -60:09:00 1.00 km/s, Isrk, RADIO 36 36-663282 11:03:54, -61:02:45 1.00 km/s, Isrk, RADIO 36 36-663282 11:03:54, -51, -59:29:27 1.00 km/s, Isrk, RADIO 37 37-658675 10:56:51, -59:45:23 1.00 km/s, Isrk, RADIO 38 38-658675 10:56:51, -59:45:23 1.00 km/s, Isrk, RADIO 39 39-661786 10:56:33, -61:01:53 1.00 km/s, Isrk, RADIO	26	26-667879	11:15:08, -61:16:57	1.00 km/s,lsrk,RADIO
28 28-667551 11:14:59, -61:11:37 1.00 km/s,lsrk,RADIO 29 29-678141 11:40:29, -63:27:59 1.00 km/s,lsrk,RADIO 30 30-G227,8768-01 10:44:17, -60:27:46 1.00 km/s,lsrk,RADIO 31 31-667958 11:15:14, -61:17:27 1.00 km/s,lsrk,RADIO 32 32-G293.5607-00 11:30:07, -62:03:12 1.00 km/s,lsrk,RADIO 33 33-667557 11:15:05, -61:09:40 1.00 km/s,lsrk,RADIO 34 34-653755 10:45:03, -59:41:09 1.00 km/s,lsrk,RADIO 35 35-659110 10:56:26, -60:09:00 1.00 km/s,lsrk,RADIO 36 36-663282 11:03:54, -61:02:45 1.00 km/s,lsrk,RADIO 37 37-658676 10:57:51, -59:29:27 1.00 km/s,lsrk,RADIO 38 38-658675 10:56:51, -59:45:23 1.00 km/s,lsrk,RADIO 39 39-661786 10:59:37, -61:01:53 1.00 km/s,lsrk,RADIO	27	27-666101	11:11:39, -61:19:41	1.00 km/s,lsrk,RADIO
29 29-678141 11:40:29, -63:27:59 1.00 km/s,lsrk,RADIO 30 30-G287.8768-01 10:44:17, -60:27:46 1.00 km/s,lsrk,RADIO 31 31-667958 11:15:14, -61:17:27 1.00 km/s,lsrk,RADIO 32 32-G293.5607-00 11:30:07, -62:03:12 1.00 km/s,lsrk,RADIO 33 33-667557 11:15:14, -61:09:40 1.00 km/s,lsrk,RADIO 34 34-653755 10:45:03, -59:41:09 1.00 km/s,lsrk,RADIO 35 35-659110 10:56:26, -60:09:00 1.00 km/s,lsrk,RADIO 36 36-663282 11:03:54, -61:02:45 1.00 km/s,lsrk,RADIO 37 37-658675 10:56:51, -59:29:27 1.00 km/s,lsrk,RADIO 38 38-658675 10:57:51, -59:29:27 1.00 km/s,lsrk,RADIO 39 39-661786 10:59:37, -61:01:53 1.00 km/s,lsrk,RADIO	28	28-667551	11:14:59, -61:11:37	1.00 km/s,lsrk,RADIO
30 30-G287.8768-01 10:44:17, -60:27:46 1.00 km/s, Isrk, RADIO 31 31-667558 11:15:14, -61:17:27 1.00 km/s, Isrk, RADIO 32 32-62293.5607-00 11:30:07, -62:03:12 1.00 km/s, Isrk, RADIO 33 36-67557 11:15:05, -61:09:40 1.00 km/s, Isrk, RADIO 34 34-653755 10:45:03, -59:41:09 1.00 km/s, Isrk, RADIO 35 35-659110 10:56:26, -60:09:00 1.00 km/s, Isrk, RADIO 36 36-663282 11:03:54, -61:02:45 1.00 km/s, Isrk, RADIO 37 37-658676 10:57:51, -59:29:27 1.00 km/s, Isrk, RADIO 38 38-658675 10:56:51, -59:45:23 1.00 km/s, Isrk, RADIO 39 39-661786 10:56:37, -61:01:53 1.00 km/s, Isrk, RADIO	29	29-678141	11:40:29, -63:27:59	1.00 km/s,lsrk,RADIO
31 31-667958 11:15:14, -61:17:27 1.00 km/s,lsrk,RADIO 32 32-G293.5607-00 11:30:07, -62:03:12 1.00 km/s,lsrk,RADIO 33 33-667557 11:15:05, -61:09:40 1.00 km/s,lsrk,RADIO 34 34-653755 10:45:03, -59:41:09 1.00 km/s,lsrk,RADIO 35 35-659110 10:56:26, -60:09:00 1.00 km/s,lsrk,RADIO 36 36-663282 11:03:54, -61:02:45 1.00 km/s,lsrk,RADIO 37 37-658676 10:57:51, -59:29:27 1.00 km/s,lsrk,RADIO 38 38-658675 10:56:51, -59:29:27 1.00 km/s,lsrk,RADIO 39 39-661786 10:59:37, -61:01:53 1.00 km/s,lsrk,RADIO	30	30-G287.8768-01	10:44:17, -60:27:46	1.00 km/s,lsrk,RADIO
32 32-G293.5607-00 11:30:07, -62:03:12 1.00 km/s, lsrk, RADIO 33 33-667557 11:15:05, -61:09:40 1.00 km/s, lsrk, RADIO 34 34-653755 10:45:03, -59:41:09 1.00 km/s, lsrk, RADIO 35 35-659110 10:56:26, -60:09:00 1.00 km/s, lsrk, RADIO 36 36-663282 11:03:54, -61:02:45 1.00 km/s, lsrk, RADIO 37 37-658676 10:57:51, -59:29:27 1.00 km/s, lsrk, RADIO 38 38-658675 10:56:51, -59:95:523 1.00 km/s, lsrk, RADIO 39 39-661786 10:59:37, -61:01:53 1.00 km/s, lsrk, RADIO	31	31-667958	11:15:14, -61:17:27	1.00 km/s,lsrk,RADIO
33 33:667557 11:15:05, -61:09:40 1.00 km/s, Isrk, RADIO 34 34-653755 10:45:03, -59:41:09 1.00 km/s, Isrk, RADIO 35 35-659110 10:56:26, -60:09:00 1.00 km/s, Isrk, RADIO 36 36-663282 11:03:54, -61:02:45 1.00 km/s, Isrk, RADIO 37 37-658676 10:57:51, -59:29:27 1.00 km/s, Isrk, RADIO 38 38-658675 10:56:51, -59:45:23 1.00 km/s, Isrk, RADIO 39 39-661786 10:59:37, -61:01:53 1.00 km/s, Isrk, RADIO	32	32-G293.5607-00	11:30:07, -62:03:12	1.00 km/s,lsrk,RADIO
34 34-653755 10:45:03, -59:41:09 1.00 km/s,lsrk,RADIO 35 35-659110 10:56:26, -60:09:00 1.00 km/s,lsrk,RADIO 36 36-663282 11:03:54, -61:02:45 1.00 km/s,lsrk,RADIO 37 37-658676 10:57:51, -59:29:27 1.00 km/s,lsrk,RADIO 38 38-658675 10:56:51, -59:29:27 1.00 km/s,lsrk,RADIO 39 39-661786 10:59:37, -61:01:53 1.00 km/s,lsrk,RADIO	33	33-667557	11:15:05, -61:09:40	1.00 km/s,lsrk,RADIO
35 35-659110 10:56:26, -60:09:00 1.00 km/s,lsrk,RADIO 36 36-663282 11:03:54, -61:02:45 1.00 km/s,lsrk,RADIO 37 37-658676 10:57:51, -59:29:27 1.00 km/s,lsrk,RADIO 38 38-658675 10:56:51, -59:45:23 1.00 km/s,lsrk,RADIO 39 39-661786 10:59:37, -61:01:53 1.00 km/s,lsrk,RADIO	34	34-653755	10:45:03, -59:41:09	1.00 km/s,lsrk,RADIO
36 36-663282 11:03:54, -61:02:45 1.00 km/s,lsrk,RADIO 37 37-658676 10:57:51, -59:29:27 1.00 km/s,lsrk,RADIO 38 38-658675 10:56:51, -59:45:23 1.00 km/s,lsrk,RADIO 39 39-661786 10:59:37, -61:01:53 1.00 km/s,lsrk,RADIO	35	35-659110	10:56:26, -60:09:00	1.00 km/s,lsrk,RADIO
37 37-658676 10:57:51, -59:29:27 1.00 km/s,lsrk,RADIO 38 38-658675 10:56:51, -59:45:23 1.00 km/s,lsrk,RADIO 39 39-661786 10:59:37, -61:01:53 1.00 km/s,lsrk,RADIO	36	36-663282	11:03:54, -61:02:45	1.00 km/s,lsrk,RADIO
38 38-658675 10:56:51, -59:45:23 1.00 km/s,lsrk,RADIO 39 39-661786 10:59:37, -61:01:53 1.00 km/s,lsrk,RADIO	37	37-658676	10:57:51, -59:29:27	1.00 km/s,lsrk,RADIO
39 39-661786 10:59:37, -61:01:53 1.00 km/s,lsrk,RADIO	38	38-658675	10:56:51, -59:45:23	1.00 km/s,lsrk,RADIO
	39	39-661786	10:59:37, -61:01:53	1.00 km/s,lsrk,RADIO

Expected Source Properties

		Peak Flux	SNR	Linewidth	RMS (over 1/3 linewidth)	linewidth / bandwidth used for sensitivity	Pol.	Pol. SNR			
	Line	1.00 mJy	0.1	1 km/s	11.66 mJy, 1.9 K	0.0002	0.0%	0.0			
	Continuum	1.00 mJy	10.7				0.0%	0.0			
Ì	Dynamic range (cont flux/line rms): 0.1										

1 Tuning

Tuning	Target Rep. Freq.		RMS	RMS
		Sky GHz	(Rep. Freq.)	Achieved
1	1,2,3,4,5,6,7,8,9,1	217.924273	94.61 μJy, 15.2 mK	94.61 uJy - 95.04 uJy

Note that one or more of the S/N estimates are < 3. Please double-check the RMS and/or line fluxes entered and/or address the issue below. Note that the bandwidth used for sensitivity is larger than 1/3 of the linewidth.

The S/N achieved for a resolution element that allows the line to be resolved will be lower than that reported.

Justification for requested RMS and resulting S/N (and for spectral lines the bandwidth selected) for the sensitivity calculation.

A sensitivity of 100 µJy at 1.37 mm wavelength delivers a mass sensitivity of nearly 0.1 Msun using dust opacities form Ossenkopf & Henning with beta=2 and dust temperature of 17 K at 7 kpc, the maximum distance to our sources. This would allow to safely detect 0.3 M_sun sources, while our total source masses have a cutoff of 500 M_sun, so even with severe fragmentation we would discover all the fragments. With this, we will be able to sample the peak of a typical CMF in a low/intermediate-mass SF region like Aquila. Although in some cases we may be limited by the dynamic range, simulations are very successful in recovering all scales, as shown in Fig.2 in the proposal. Also, we found from past experience that self-cal can improve the dynamic range considerably.

For the lines maps, a spectral resolution of 0.5 km/s and a spatial resolution of 0.4" give a 1 sigma rms of 1.4 K, which is as shown in Fig. 2, is sufficient to analyze the line emission even in weaker cores, and could be further enhanced by spectral smoothing. Fig. 2 is based on real ALMA observations of a high-mass star-forming region. We will not be able to analyze the lines of all sources in that manner, but we expect that we will be able to do the analysis in enough sources to be worthwhile, and use 13CO in the ones weaker in H2CO or CH3CN.

-Justification of the chosen angular resolution and largest angular scale for the source(s) in this Science Goal.

We would like to get a resolution of about 0.4" to achieve a resolution of at least 2500 AU at all distances considered. This would allow to resolve the clusters sufficiently to determine the CMF, find large toroid-like rotating structures or circumbinary disks, and detect disk candidates for further studies. The largest scale is given by the desire to model the density and temperature structure on the clump scale, and to fully characterize the clumpßlevel

The configuration proposed by the OT for these requirements (C4-C1-ACA) has been verified to provide enough time for large programs to host our observations, if the sources can be spread out in an interval of +/- 3 h, as stated by the knowledge base, and verified by a helpdesk ticket. Thus, we do not exceed the time limit per LST interval for large programs, and our program poses no criticality in terms of scheduling feasibility for both requested configurations.

Correlator Comments

Note that the spectral resolution is larger than 1/3 of the the spectral line width and that your line may not be resolved.

-Justification of the correlator set-up with particular reference to the number of spectral resolution elements per line width.

SG : 1 of 6 High-mass stars 0 cluster 13 Band 6

cience Goal Parameters											
Ang.Res.	LAS	Req	quested RMS	RMS Ba	andwidth	Rep.Freq.		Cont. RMS	Cont. Bandwidth	Poln.Prod.	Non-standard mode
0.4000"	30.0"	100	μJy, 16.1 mK	5159.04 km	/s, 3.7 GHz	217.925000 GHz	98.65	53 μJy, 15.9 mK	3.750 GHz	XX,YY	No
Jse of 12m Array (43 antennas)											
t_total(all configs)	t_sci	ence(C43-4)	t_total(C43-1)	Imaged area	#12m poin	ting 12m Mosa	aic spacing	HPBW	t_per_point	Data Vol	Avg. Data Rate
0.9 h		0.3 h	0.2 h	8.9 "	6	off	set	26.7 "	181.3 s	96.6 GB	40.1 MB/s
Use of ACA 7m Array	(10 antenr	nas) and TP Ar	rray								
t_total(ACA)	t_tota	al(7m)	t_total(TP)	Imaged area	#7m pointing	7m Mosaic s	spacing	HPBW	t_per_point	Data Vol	Avg. Data Rate
1.5 h	1.	5 h	0.0 h	15.3 "	6	offse	t	45.8 "	423.3 s	3.5 GB	0.8 MB/s

Spectral Setup : Spectral Line

BB	Center Freq Rest GHz	spw name	Eff #Ch p.p.	Bandwidth	Resolution	Vel. Bandwidth	Vel. Res.	Res. El. per FWHM	
1	217.925000	Band 1	3840	1875.00 MHz	0.977 MHz	2579.5 km/s	1.344 km/s	1	
2	220.000000	Band 2	3840	1875.00 MHz	0.977 MHz	2555.2 km/s	1.331 km/s	1	
3	218.300000	H2CO lines	3840	468.75 MHz	244.141 kHz	643.8 km/s	0.335 km/s	3	
4	220.600000	13CO and CH3CN	3840	468.75 MHz	244.141 kHz	637.1 km/s	0.332 km/s	3	
6 Targets	Targets Expected Source Properties								

V,def,frame --OR--z V, der, Irame - OR--2 1.00 km/s, Isrk, RADIO 1.00 km/s, Isrk, RADIO

Expected Source Properties

	Deels Eluis	CNID	Linousidth	RMS	linewidth / bandwidth	Del	Pol.
	Реак них	Hux SNR Linew		(over 1/3 linewidth)	used for sensitivity	Pol.	SNR
Line	1.00 mJy	0.1	1 km/s	12.27 mJy, 2 K	0.0002	0.0%	0.0
Continuum	1.00 mJy	10.1				0.0%	0.0
Dynamic rang	e (cont flux/lii	ne rms): 0.1					

1 Tuning

Tuning	Target	Rep. Freq. Sky GHz	RMS (Rep. Freq.)	RMS Achieved
1	1.2.3.4.5.6	217.924273	98.87 JUJV. 15.9 mK	98.87 JJV - 99.28 JJV

Note that one or more of the S/N estimates are < 3. Please double-check the RMS and/or line fluxes entered and/or address the issue below. Note that the bandwidth used for sensitivity is larger than 1/3 of the linewidth.

The S/N achieved for a resolution element that allows the line to be resolved will be lower than that reported.

- Justification for requested RMS and resulting S/N (and for spectral lines the bandwidth selected) for the sensitivity calculation.

A sensitivity of 100 µJy at 1.37 mm wavelength delivers a mass sensitivity of nearly 0.1 Msun using dust opacities form Ossenkopf & Henning with beta=2 and dust temperature of 17 K at 7 kpc, the maximum distance to our sources. This would allow to safely detect 0.3 M_sun sources, while our total source masses have a cutoff of 500 M_sun, so even with severe fragmentation we would discover all the fragments. With this, we will be able to sample the peak of a typical CMF in a low/intermediate-mass SF region like Aquila. Although in some cases we may be limited by the dynamic range, simulations are very successful in recovering all scales, as shown in Fig.2 in the proposal. Also, we found from past experience that self-cal can improve the dynamic range considerably.

For the lines maps, a spectral resolution of 0.5 km/s and a spatial resolution of 0.4" give a 1 sigma rms of 1.4 K, which is as shown in Fig. 2, is sufficient to analyze the line emission even in weaker cores, and could be further enhanced by spectral smoothing. Fig. 2 is based on real ALMA observations of a high-mass star-forming region. We will not be able to analyze the lines of all sources in that manner, but we expect that we will be able to do the analysis in enough sources to be worthwhile, and use 13CO in the ones weaker in H2CO or CH3CN.

-Justification of the chosen angular resolution and largest angular scale for the source(s) in this Science Goal.

We would like to get a resolution of about 0.4" to achieve a resolution of at least 2500 AU at all distances considered. This would allow to resolve the clusters sufficiently to determine the CMF, find large toroid-like rotating structures or circumbinary disks, and detect disk candidates for further studies. The largest scale is given by the desire to model the density and temperature structure on the clump scale, and to fully characterize the clumpßlevel

The configuration proposed by the OT for these requirements (C4-C1-ACA) has been verified to provide enough time for large programs to host our observations, if the sources can be spread out in an interval of +/- 3 h, as stated by the knowledge base, and verified by a helpdesk ticket. Thus, we do not exceed the time limit per LST interval for large programs, and our program poses no criticality in terms of scheduling feasibility for both requested configurations.

Correlator Comments

Note that the spectral resolution is larger than 1/3 of the the spectral line width and that your line may not be resolved.

-Justification of the correlator set-up with particular reference to the number of spectral resolution elements per line width.

SG : 1 of 6 High-mass stars 0 cluster 14 Band 6

Science Goal Parame	ters											
Ang.Res.	LAS	Re	quested RMS	RMS Ba	andwidth	Rep	p.Freq.	(Cont. RMS	Cont. Bandwidth	Poln.Prod.	Non-standard mode
0.4000"	30.0"	100	μJy, 16.1 mK	5159.026 km	1/s, 3.7 GHz	217.925	5000 GHz	99.56	63 μJy, 16 mK	3.750 GHz	XX,YY	No
se of 12m Array (43 antennas)												
t_total(all configs)	t_scie	nce(C43-4)	t_total(C43-1)	Imaged area	#12m poin	ting	12m Mosaic spa	cing	HPBW	t_per_point	Data Vol	Avg. Data Rate
0.8 h		0.2 h	0.2 h	8.9 "	4		offset		26.7 "	181.3 s	74.6 GB	39.7 MB/s
se of ACA 7m Array (10 antennas) and TP Array												
t_total(ACA)	t_total	l(7m)	t_total(TP)	Imaged area	#7m pointing	1 7	7m Mosaic spacing	g	HPBW	t_per_point	Data Vol	Avg. Data Rate
1.2 h	1.2	h	0.0 h	15.3 "	4		offset		45.8 "	453.5 s	2.7 GB	0.8 MB/s

Spectral Setup : Spectral Line

BB	Center Freq Rest GHz	spw name	Eff #Ch p.p.	Bandwidth	Resolution	Vel. Bandwidth	Vel. Res.	Res. El. per FWHM
1	217.925000	Band 1	3840	1875.00 MHz	0.977 MHz	2579.5 km/s	1.343 km/s	1
2	220.000000	Band 2	3840	1875.00 MHz	0.977 MHz	2555.2 km/s	1.331 km/s	1
3	218.300000	H2CO lines	3840	468.75 MHz	244.141 kHz	643.8 km/s	0.335 km/s	3
4	220.600000	13CO and CH3CN	3840	468.75 MHz	244.141 kHz	637.1 km/s	0.332 km/s	3
			-					

4 Targets

Expected Source Properties

		Peak Flux	SNR	Linewidth	RMS (over 1/3 linewidth)	linewidth / bandwidth used for sensitivity	Pol.	Pol. SNR
	Line	1.00 mJy	0.1	1 km/s	12.39 mJy, 2 K	0.0002	0.0%	0.0
	Continuum	1.00 mJy	10.0				0.0%	0.0
Ì	Oynamic range	e (cont flux/lii	ne rms): 0.1					

No. Target Ra,Dec (ICRS) V,def,frame --OR--z 1 1-615347 09:24:27, -51:59:16 1.00 km/s,Isrk,RADIO 2 2-615483 09:24:40, -52:00:29 1.00 km/s,Isrk,RADIO 3 3-G279.4100-01.6... 09:49:26, -55:59:32 1.00 km/s,Isrk,RADIO 4 4-G274.0649-01.1... 09:24:42, -52:01:50 1.00 km/s,Isrk,RADIO

1 Tuning

Tuning	Target	Rep. Freq.	RMS	RMS
		Sky GHz	(Rep. Freq.)	Achieved
1	1,2,3,4	217.924273	99.57 μJy, 16.0 mK	99.57 uJy - 99.99 uJy

Note that one or more of the S/N estimates are < 3. Please double-check the RMS and/or line fluxes entered and/or address the issue below. Note that the bandwidth used for sensitivity is larger than 1/3 of the linewidth.

The S/N achieved for a resolution element that allows the line to be resolved will be lower than that reported.

- Justification for requested RMS and resulting S/N (and for spectral lines the bandwidth selected) for the sensitivity calculation.

A sensitivity of 100 µJy at 1.37 mm wavelength delivers a mass sensitivity of nearly 0.1 Msun using dust opacities form Ossenkopf & Henning with beta=2 and dust temperature of 17 K at 7 kpc, the maximum distance to our sources. This would allow to safely detect 0.3 M_sun sources, while our total source masses have a cutoff of 500 M_sun, so even with severe fragmentation we would discover all the fragments. With this, we will be able to sample the peak of a typical CMF in a low/intermediate-mass SF region like Aquila. Although in some cases we may be limited by the dynamic range, simulations are very successful in recovering all scales, as shown in Fig.2 in the proposal. Also, we found from past experience that self-cal can improve the dynamic range considerably.

For the lines maps, a spectral resolution of 0.5 km/s and a spatial resolution of 0.4" give a 1 sigma rms of 1.4 K, which is as shown in Fig. 2, is sufficient to analyze the line emission even in weaker cores, and could be further enhanced by spectral smoothing. Fig. 2 is based on real ALMA observations of a high-mass star-forming region. We will not be able to analyze the lines of all sources in that manner, but we expect that we will be able to do the analysis in enough sources to be worthwhile, and use 13CO in the ones weaker in H2CO or CH3CN.

-Justification of the chosen angular resolution and largest angular scale for the source(s) in this Science Goal.

We would like to get a resolution of about 0.4" to achieve a resolution of at least 2500 AU at all distances considered. This would allow to resolve the clusters sufficiently to determine the CMF, find large toroid-like rotating structures or circumbinary disks, and detect disk candidates for further studies. The largest scale is given by the desire to model the density and temperature structure on the clump scale, and to fully characterize the clumpßlevel

The configuration proposed by the OT for these requirements (C4-C1-ACA) has been verified to provide enough time for large programs to host our observations, if the sources can be spread out in an interval of +/- 3 h, as stated by the knowledge base, and verified by a helpdesk ticket. Thus, we do not exceed the time limit per LST interval for large programs, and our program poses no criticality in terms of scheduling feasibility for both requested configurations.

Correlator Comments

Note that the spectral resolution is larger than 1/3 of the the spectral line width and that your line may not be resolved.

-Justification of the correlator set-up with particular reference to the number of spectral resolution elements per line width.

SG : 1 of 6 High-mass stars 0 cluster 15 Band 6

Scie	nce Goal Pa	arameters																
	Ang.Res.	. L	AS	Requ	ested RMS	RMS Ba	andwidth		Rep.Freq.		Cont	. RMS	(Cont. Bandwid	th P	oln.Prod.	Non-star	dard mode
	0.4000"	3	0.0"	100 µJ	ly, 16.1 mK	5159.066 kn	n/s, 3.7 GHz	s, 3.7 GHz 217.925000 GHz			96.95 μJy	r, 15.6 mK		3.750 GHz		XX,YY		No
Use	of 12m Arra	ay (43 ante	ennas)															
t	_total(all co	nfigs)	t_science(0	243-4)	t_total(C43-1)	Imaged area	#12m p	oointing	12m Mos	saic spa	cing	HPBW		t_per_point		Data Vol	Avg	. Data Rate
	1.1 h		0.4 h		0.3 h	8.9 "		9	0	ffset		26.7 "		181.3 s		123.3 GB	3	9.1 MB/s
Use	of ACA 7m	Array (10	antennas) ar	nd TP Arra	Ŋ													
	t_total(ACA	A)	t_total(7m)		t_total(TP)	Imaged area	#7m poin	ting	7m Mosaic	spacing	9	HPBW		t_per_point		Data Vol	Avg	. Data Rate
	2.0 h		2.0 h		0.0 h	15.3 "	9		offs	et		45.8 "		423.2 s		4.8 GB	0	.9 MB/s
Spe	ctral Setup :	: Spectral	Line															
	BB	Cer Res	iter Freq st GHz		spw name	Eff #Ch p.p.		Bandwidtl	h	Reso	lution	Vel	. Band	width	Ve	el. Res.	Re	es. El. er FWHM
	1	217	925000		Band 1	3840	18	375.00 Mł	Hz	0.977	' MHz	25	79.5 k	m/s	1.34	14 km/s		1
	2	220	000000		Band 2	3840	18	1875.00 MHz		0.977	' MHz	25	55.2 k	m/s	1.33	31 km/s		1
	3	218	300000		H2CO lines	3840	4	468.75 MHz		244.141 kHz		64	43.8 kr	n/s	0.33	35 km/s		3
	4	220	600000	13	3CO and CH3CN	3840	4	468.75 MHz		244.14	11 kHz	6	37.1 ki	n/s	0.33	32 km/s		3
9 Ta	irgets						Expected	Source F	Properties									
No.	Tai	rget	Ra,Dec (ICRS)	V,def,frame	ORz		Pe	ak Flux	SNR	Linewidth	RMS (over 1/3 line	width)	linewidth / bai	ndwidth	Pol		Pol. SNR
2	2-G259.04	53-01 5	08:26:17 -	41.10.47	1.00 km/s lsrk	RADIO	Line	1.0	00 mJv	0.1	1 km/s	12.06 mJv.	1.9 K	0.0002		0.09	6	0.0
3	3-580720		08:29:07	41:07:18	1.00 km/s.lsrk	RADIO	Continu	um 1.0	00 mJy 1	0.3					-	0.09	6	0.0
4	4-575097		08:25:26, -	37:59:04	1.00 km/s,lsrk	RADIO	Dynamic	range (co	ont flux/line rm	s): 0.1								
5	5-580687		08:29:03,	41:06:28	1.00 km/s,lsrk	RADIO		• •										
6	6-586092		08:32:08, -	43:13:46	1.00 km/s,lsrk	,RADIO	1 Tuning											
7	7-575465		08:25:16, -	38:19:39	1.00 km/s,lsrk	,RADIO	Tur	ning	Targe	t	Rep	. Freq.		RMS			RMS	
8	8-580615		08:30:36,	40:51:35	1.00 km/s,lsrk	,RADIO					Sky	GHz		(Rep. Fre	q.)		Achiev	ed
9	9-583287		08:32:07, -	42:02:48	1.00 km/s,lsrk	,RADIO	1	L	1,2,3,4,5,6	,7,8,9	217.9	924273		97.1 μJy, 15.	6 mK	97.	10 uJy - 9	7.50 uJy

Note that one or more of the S/N estimates are < 3. Please double-check the RMS and/or line fluxes entered and/or address the issue below. Note that the bandwidth used for sensitivity is larger than 1/3 of the linewidth.

The S/N achieved for a resolution element that allows the line to be resolved will be lower than that reported.

- Justification for requested RMS and resulting S/N (and for spectral lines the bandwidth selected) for the sensitivity calculation.

A sensitivity of 100 µJy at 1.37 mm wavelength delivers a mass sensitivity of nearly 0.1 Msun using dust opacities form Ossenkopf & Henning with beta=2 and dust temperature of 17 K at 7 kpc, the maximum distance to our sources. This would allow to safely detect 0.3 M_sun sources, while our total source masses have a cutoff of 500 M_sun, so even with severe fragmentation we would discover all the fragments. With this, we will be able to sample the peak of a typical CMF in a low/intermediate-mass SF region like Aquila. Although in some cases we may be limited by the dynamic range, simulations are very successful in recovering all scales, as shown in Fig.2 in the proposal. Also, we found from past experience that self-cal can improve the dynamic range considerably.

For the lines maps, a spectral resolution of 0.5 km/s and a spatial resolution of 0.4" give a 1 sigma rms of 1.4 K, which is as shown in Fig. 2, is sufficient to analyze the line emission even in weaker cores, and could be further enhanced by spectral smoothing. Fig. 2 is based on real ALMA observations of a high-mass star-forming region. We will not be able to analyze the lines of all sources in that manner, but we expect that we will be able to do the analysis in enough sources to be worthwhile, and use 13CO in the ones weaker in H2CO or CH3CN.

-Justification of the chosen angular resolution and largest angular scale for the source(s) in this Science Goal.

We would like to get a resolution of about 0.4" to achieve a resolution of at least 2500 AU at all distances considered. This would allow to resolve the clusters sufficiently to determine the CMF, find large toroid-like rotating structures or circumbinary disks, and detect disk candidates for further studies. The largest scale is given by the desire to model the density and temperature structure on the clump scale, and to fully characterize the clumpßlevel

The configuration proposed by the OT for these requirements (C4-C1-ACA) has been verified to provide enough time for large programs to host our observations, if the sources can be spread out in an interval of +/- 3 h, as stated by the knowledge base, and verified by a helpdesk ticket. Thus, we do not exceed the time limit per LST interval for large programs, and our program poses no criticality in terms of scheduling feasibility for both requested configurations.

Correlator Comments

Note that the spectral resolution is larger than 1/3 of the the spectral line width and that your line may not be resolved.

-Justification of the correlator set-up with particular reference to the number of spectral resolution elements per line width.

SG : 1 of 6 High-mass stars 0 cluster 16 Band 6

Science Goal Parame	ters											
Ang.Res.	LAS	Re	quested RMS	RMS B	andwidth		Rep.Freq.		Cont. RMS	Cont. Bandwidth	Poln.Prod.	Non-standard mode
0.4000"	30.0"	100	μJy, 16.1 mK	5159.076 kn	n/s, 3.7 GHz	217	.925000 GHz	96.1	.46 μJy, 15.5 mK	3.750 GHz	XX,YY	No
Use of 12m Array (43	se of 12m Array (43 antennas)											
t_total(all configs)	t_sc	ience(C43-4)	t_total(C43-1)	Imaged area	#12m poir	iting	12m Mosai	c spacing	HPBW	t_per_point	Data Vol	Avg. Data Rate
0.8 h		0.2 h	0.2 h	8.9 "	5		offs	et	26.7 "	181.3 s	83.0 GB	40.0 MB/s
Use of ACA 7m Array	(10 anten	nas) and TP A	array									
t total(ACA)	t tot	al(7m)	t total(TP)	Imaged area	#7m pointing	1	7m Mosaic sr	bacing	HPBW	t per point	Data Vol	Avg. Data Rate

t_total(ACA)	t_total(7m)	t_total(TP)	Imaged area	#7m pointing	/m Mosaic spacing	HPBW	t_per_point	Data Vol	Avg. Data Rate
1.3 h	1.3 h	0.0 h	15.3 "	5	offset	45.8 "	423.3 s	3.0 GB	0.8 MB/s
Spectral Setup : Spectral Line									

BB	Center Freq Rest GHz	spw name	Eff #Ch p.p.	Bandwidth	Resolution	Vel. Bandwidth	Vel. Res.	Res. El. per FWHM
1	217.925000	Band 1	3840	1875.00 MHz	0.977 MHz	2579.5 km/s	1.344 km/s	1
2	220.000000	Band 2	3840	1875.00 MHz	0.977 MHz	2555.2 km/s	1.331 km/s	1
3	218.300000	H2CO lines	3840	468.75 MHz	244.141 kHz	643.8 km/s	0.335 km/s	3
4	220.600000	13CO and CH3CN	3840	468.75 MHz	244.141 kHz	637.1 km/s	0.332 km/s	3
5 Targets			E	xpected Source Properti	es			

No.	Target	Ra,Dec (ICRS)	V,def,frameORz
1	1-569314	08:14:53, -35:33:02	1.00 km/s,lsrk,RADIO
2	2-565926	08:02:43, -34:31:47	1.00 km/s,lsrk,RADIO
3	3-569408	08:16:00, -35:25:53	1.00 km/s,lsrk,RADIO
4	4-561782	07:59:20, -30:43:44	1.00 km/s,lsrk,RADIO
5	5-571105	08:15:57, -36:08:06	1.00 km/s,lsrk,RADIO

Expected Source Properties

		Peak Flux	SNR	Linewidth	RMS (over 1/3 linewidth)	linewidth / bandwidth used for sensitivity	Pol.	Pol. SNR
	Line	1.00 mJy	0.1	1 km/s	11.96 mJy, 1.9 K	0.0002	0.0%	0.0
	Continuum	1.00 mJy	10.4				0.0%	0.0
Ì	Dynamic range (cont flux/line rms): 0.1							

1 Tuning

Tuning	Target	Rep. Freq. Sky GHz	RMS (Rep. Freg.)	RMS Achieved
1	1,2,3,4,5	217.924273	95.71 µJy, 15.4 mK	95.71 uJy - 96.09 uJy

Note that one or more of the S/N estimates are < 3. Please double-check the RMS and/or line fluxes entered and/or address the issue below. Note that the bandwidth used for sensitivity is larger than 1/3 of the linewidth.

The S/N achieved for a resolution element that allows the line to be resolved will be lower than that reported.

- Justification for requested RMS and resulting S/N (and for spectral lines the bandwidth selected) for the sensitivity calculation.

A sensitivity of 100 µJy at 1.37 mm wavelength delivers a mass sensitivity of nearly 0.1 Msun using dust opacities form Ossenkopf & Henning with beta=2 and dust temperature of 17 K at 7 kpc, the maximum distance to our sources. This would allow to safely detect 0.3 M_sun sources, while our total source masses have a cutoff of 500 M_sun, so even with severe fragmentation we would discover all the fragments. With this, we will be able to sample the peak of a typical CMF in a low/intermediate-mass SF region like Aquila. Although in some cases we may be limited by the dynamic range, simulations are very successful in recovering all scales, as shown in Fig.2 in the proposal. Also, we found from past experience that self-cal can improve the dynamic range considerably.

For the lines maps, a spectral resolution of 0.5 km/s and a spatial resolution of 0.4" give a 1 sigma rms of 1.4 K, which is as shown in Fig. 2, is sufficient to analyze the line emission even in weaker cores, and could be further enhanced by spectral smoothing. Fig. 2 is based on real ALMA observations of a high-mass star-forming region. We will not be able to analyze the lines of all sources in that manner, but we expect that we will be able to do the analysis in enough sources to be worthwhile, and use 13CO in the ones weaker in H2CO or CH3CN.

-Justification of the chosen angular resolution and largest angular scale for the source(s) in this Science Goal.

We would like to get a resolution of about 0.4" to achieve a resolution of at least 2500 AU at all distances considered. This would allow to resolve the clusters sufficiently to determine the CMF, find large toroid-like rotating structures or circumbinary disks, and detect disk candidates for further studies. The largest scale is given by the desire to model the density and temperature structure on the clump scale, and to fully characterize the clumpßlevel

The configuration proposed by the OT for these requirements (C4-C1-ACA) has been verified to provide enough time for large programs to host our observations, if the sources can be spread out in an interval of +/- 3 h, as stated by the knowledge base, and verified by a helpdesk ticket. Thus, we do not exceed the time limit per LST interval for large programs, and our program poses no criticality in terms of scheduling feasibility for both requested configurations.

Correlator Comments

Note that the spectral resolution is larger than 1/3 of the the spectral line width and that your line may not be resolved.

-Justification of the correlator set-up with particular reference to the number of spectral resolution elements per line width.

SG : 2 of 6 High-mass stars 1 Band 6

Science Goal Parameters Ang.Res. LAS 0.4000" 30.0" Cont. Bandwidth Poln.Prod. Non-standard mode Requested RMS RMS Bandwidth Rep.Freq. Cont. RMS 5158.508 km/s, 3.7 GHz 217.925000 GHz 96.549 μJy, 15.5 mK 100 µJy, 16.1 mK 3.750 GHz XX,YY No Use of 12m Array (43 antennas) t_total(all configs) t_science(C43-4) t_total(C43-1) 15.4 h 6.6 h 3.9 h Imaged area #12m pointing 12m Mosaic spacing HPBW t_per_point Data Vol Avg. Data Rate 8.9 " 26.7 " 180.4 s 1755.3 GB 39.2 MB/s 141 offset

Use of ACA 7m Array (10 antennas) and TP Array

t_total(ACA)	t_total(7m)	t_total(TP)	Imaged area	#7m pointing	7m Mosaic spacing	HPBW	t_per_point	Data Vol	Avg. Data Rate
27.4 h	27.4 h	0.0 h	15.3 "	141	offset	45.8 "	421.3 s	68.7 GB	0.9 MB/s

Spectral Setup : Spectral Line

BB	Center Freq Rest GHz	spw name	Eff #Ch p.p.	Bandwidth	Resolution	Vel. Bandwidth	Vel. Res.	Res. El. per FWHM
1	217.925000	Band 1	3840	1875.00 MHz	0.977 MHz	2579.3 km/s	1.343 km/s	1
2	220.000000	Band 2	3840	1875.00 MHz	0.977 MHz	2554.9 km/s	1.331 km/s	1
3	218.300000	H2CO lines	3840	468.75 MHz	244.141 kHz	643.7 km/s	0.335 km/s	3
4	220.600000	13CO and CH3CN	3840	468.75 MHz	244.141 kHz	637.0 km/s	0.332 km/s	3

141 Targets

No.	Target	Ra,Dec (ICRS)	V,def,frameORz
1	1-99964	18:32:43, -09:09:01	1.00 km/s,lsrk,RADIO
2	2-100132	18:31:1308:54:37	1.00 km/s.lsrk.RADIO
3	3-100309	18:33:3309:10:25	1.00 km/s.lsrk.RADIO
4	4-100992	18:31:24, -08:45:26	1.00 km/s.lsrk.RADIO
5	5-101073	18:34:29 -09:08:17	1 00 km/s lsrk RADIO
6	6-101377	18:34:16 -09:02:58	1 00 km/s lsrk RADIO
7	7 101767	10.04.10, 00.02.00	1.00 km/s,isik,ikADIO
-	0 101000	10:03:03, -00:00:01	1.00 km/s lark DADIO
0	0-101099	18.34.40, -09.00.37	1.00 km/s,ISIK,RADIO
9	9-102131	18:32:12, -08:39:26	1.00 km/s,Isrk,RADIO
10	10-102393	18:35:08, -08:59:29	1.00 km/s,Isrk,RADIO
11	11-102456	18:33:54, -08:49:21	1.00 km/s,Isrk,RADIO
12	12-102460	18:34:45, -08:55:52	1.00 km/s,Isrk,RADIO
13	13-102723	18:34:56, -08:54:10	1.00 km/s,Isrk,RADIO
14	14-103319	18:33:37, -08:36:32	1.00 km/s,lsrk,RADIO
15	15-103357	18:33:52, -08:38:00	1.00 km/s,lsrk,RADIO
16	16-103421	18:33:23, -08:33:34	1.00 km/s,lsrk,RADIO
17	17-103459	18:34:36, -08:42:26	1.00 km/s,lsrk,RADIO
18	18-103708	18:34:00, -08:34:27	1.00 km/s,lsrk,RADIO
19	19-103916	18:34:54, -08:38:26	1.00 km/s,lsrk,RADIO
20	20-103932	18:33:29, -08:27:27	1.00 km/s,lsrk,RADIO
21	21-104013	18:32:25, -08:18:22	1.00 km/s,lsrk,RADIO
22	22-104080	18:32:1608:16:31	1.00 km/s.lsrk.RADIO
23	23-104193	18:34:45, -08:34:13	1.00 km/s.lsrk.RADIO
24	24-104242	18:34:48 -08:33:53	1 00 km/s lsrk RADIO
25	25-104316	18:34:39 -08:31:39	1 00 km/s lsrk RADIO
26	26-104344	18:32:26 -08:14:20	1 00 km/s lsrk RADIO
27	27-104421	18:22:48 -08:22:47	1.00 km/s lsrk PADIO
28	28-104570	19:22:44 -09:21:22	1.00 km/s lsrk PADIO
20	20-104373	10.33.44, -00.21.23	1.00 km/c lork BADIO
29	29-104040	10:34.23, -00:22.37	1.00 km/s lark DADIO
30	30-104999	10:32:07, -08:03:37	1.00 km/s lark DADIO
31	31-105009	10.04.11 00.10.07	1.00 km/s,ISIK,RADIO
32	32-105028	18:34:11, -08:19:08	1.00 km/s,Isrk,RADIO
33	33-105201	18:33:39, -08:12:25	1.00 km/s,Isrk,RADIO
34	34-105295	18:33:46, -08:12:01	1.00 km/s,Isrk,RADIO
35	35-105314	18:34:13, -08:15:13	1.00 km/s,Isrk,RADIO
36	36-105334	18:34:25, -08:16:28	1.00 km/s,lsrk,RADIO
37	37-105388	18:33:41, -08:10:01	1.00 km/s,Isrk,RADIO
38	38-105642	18:35:12, -08:17:37	1.00 km/s,lsrk,RADIO
39	39-105657	18:33:53, -08:07:13	1.00 km/s,lsrk,RADIO
40	40-105702	18:33:35, -08:04:11	1.00 km/s,lsrk,RADIO
41	41-105855	18:32:35, -07:54:03	1.00 km/s,lsrk,RADIO
42	42-106156	18:34:13, -08:02:12	1.00 km/s,lsrk,RADIO
43	43-106164	18:32:52, -07:51:39	1.00 km/s,lsrk,RADIO
44	44-106267	18:35:12, -08:08:17	1.00 km/s,lsrk,RADIO
45	45-106339	18:35:21, -08:08:26	1.00 km/s,lsrk,RADIO
46	46-106475	18:33:23, -07:51:16	1.00 km/s,lsrk,RADIO
47	47-106679	18:33:27, -07:48:44	1.00 km/s,lsrk,RADIO
48	48-106706	18:35:5208:06:58	1.00 km/s.lsrk.RADIO
49	49-106756	18:34:24, -07:54:53	1.00 km/s.lsrk.RADIO
50	50-106819	18:35:22, -08:01:23	1.00 km/s.lsrk.RADIO
51	51-106921	18:35:20 -07:59:42	1 00 km/s lsrk RADIO
52	52-106974	18:34:28, -07:52:19	1.00 km/s.lsrk.RADIO
52	53-107003	18:34:54 -07:55:07	1.00 km/s lsrk RADIO
5/	54-107025	19:32:19 .07:42:22	1.00 km/s lerk PADIO
54	54-107023	10.33.10, -07.42.23	
22	00-10/000 E6 107142	10.34.22, -07.49:45	1.00 km/s lock DAD/O
50	50-10/142	10.34.23, -07.48:43	1.00 km/s lask DAD/C
5/	21-10/10/	10.35:53, -07:59:55	1.00 km/s,ISIK,RADIO
58	58-10/225	18:34:17, -07:46:37	1.00 km/s,ISrK,RADIO
59	59-10/42/	18:35:52, -07:55:19	1.00 km/s,ISrk,RADIO
60	60-107612	18:33:55, -07:37:27	1.00 km/s,lsrk,RADIO

Expected Source Properties

	Peak Flux	SNR	Linewidth	RMS (over 1/3 linewidth)	linewidth / bandwidth used for sensitivity	Pol.	Pol. SNR
Line	1.00 mJy	0.1	1 km/s	12.01 mJy, 1.9 K	0.0002	0.0%	0.0
Continuum	1.00 mJy	10.4				0.0%	0.0
Dynamic range (cont flux/line rms): 0.1							

1 Tuning

Tuning	Target	Rep. Freq. Sky GHz	RMS (Rep. Freq.)	RMS Achieved
1	1,2,3,4,5,6,7,8,9,1	217.924273	96.73 μJy, 15.6 mK	96.73 uJy - 97.11 uJy

No.	Target	Ra,Dec (ICRS)	V,def,frameORz
61	61-108110	18:33:5707:29:41	1.00 km/s.lsrk.RADIO
62	62-108121	18:34:13, -07:31:40	1.00 km/s.lsrk.RADIO
63	63-108273	18:36:10, -07:44:08	1.00 km/s.lsrk.RADIO
64	64-108441	18:36:12 -07:41:41	1 00 km/s lsrk RADIO
65	65-108490	18:34:41 -07:29:07	1 00 km/s lsrk RADIO
66	66-108506	18:34:00 -07:23:40	1 00 km/s lsrk RADIO
67	67-108513	18:34:44 -07:29:20	1.00 km/s lsrk RADIO
68	68-108668	18:33:52 -07:20:22	1.00 km/s,Isik,RADIO
60	60 109711	10.35.32, -07.20.22	
70	70-108768	18:25:27 -07:21:20	1.00 km/s,ISIK,IADIO
70	71 109001	10.33.27, -07.31.30	1.00 km/s,Isik,RADIO
72	72 100015	10.34.37, -07.27.11	1.00 km/s,ISIK,RADIO
72	72-100013	10.33.23, -07.30.23	1.00 km/s,ISIK,RADIO
74	73-100090	10.34.30, -07.20.17	1.00 km/s lork DADIO
74	74-100933	10.30.40, -07.39.15	1.00 km/s,ISIK,RADIO
75	75-109047	18:35:11, -07:20:27	1.00 km/s,ISIK,RADIO
76	76-109085	18:34:58, -07:24:23	1.00 km/s,ISIK,RADIO
70	77-109223	18:30:05, -07:31:23	1.00 km/s,ISIK,RADIO
78	78-109264	18:35:46, -07:28:32	1.00 km/s,ISFK,RADIO
79	79-109432	18:36:30, -07:32:25	1.00 km/s,ISFK,RADIO
80	80-109442	18:37:02, -07:36:27	1.00 km/s,Isrk,RADIO
81	81-109444	18:34:52, -07:19:42	1.00 km/s,lsrk,RADIO
82	82-109526	18:34:55, -07:19:05	1.00 km/s,Isrk,RADIO
83	83-109559	18:36:55, -07:34:13	1.00 km/s,lsrk,RADIO
84	84-109560	18:37:01, -07:34:58	1.00 km/s,lsrk,RADIO
85	85-109588	18:36:31, -07:30:50	1.00 km/s,lsrk,RADIO
86	86-109669	18:34:52, -07:17:09	1.00 km/s,lsrk,RADIO
87	87-109815	18:35:22, -07:19:09	1.00 km/s,lsrk,RADIO
88	88-109975	18:36:33, -07:26:01	1.00 km/s,lsrk,RADIO
89	89-110009	18:36:36, -07:25:52	1.00 km/s,lsrk,RADIO
90	90-110233	18:36:49, -07:24:41	1.00 km/s,lsrk,RADIO
91	91-110318	18:36:46, -07:23:07	1.00 km/s,lsrk,RADIO
92	92-110346	18:36:34, -07:21:18	1.00 km/s,lsrk,RADIO
93	93-110376	18:36:47, -07:22:35	1.00 km/s,lsrk,RADIO
94	94-110522	18:35:50, -07:13:27	1.00 km/s,lsrk,RADIO
95	95-110664	18:36:06, -07:13:45	1.00 km/s,lsrk,RADIO
96	96-110679	18:36:44, -07:18:23	1.00 km/s,lsrk,RADIO
97	97-110831	18:36:08, -07:11:35	1.00 km/s,lsrk,RADIO
98	98-111106	18:36:41, -07:12:16	1.00 km/s,lsrk,RADIO
99	99-111167	18:36:36, -07:10:50	1.00 km/s,lsrk,RADIO
100	100-111597	18:36:59, -07:07:30	1.00 km/s,lsrk,RADIO
101	101-111983	18:38:36, -07:14:31	1.00 km/s,lsrk,RADIO
102	102-112169	18:36:54, -06:58:04	1.00 km/s,lsrk,RADIO
103	103-112582	18:38:09, -07:02:32	1.00 km/s,lsrk,RADIO
104	104-112597	18:36:33, -06:50:06	1.00 km/s,lsrk,RADIO
105	105-112687	18:36:28, -06:48:01	1.00 km/s,Isrk,RADIO
106	106-112942	18:36:16, -06:43:17	1.00 km/s,Isrk,RADIO
107	107-113041	18:36:48, -06:46:25	1.00 km/s,lsrk,RADIO
108	108-113073	18:38:11, -06:56:35	1.00 km/s,lsrk,RADIO
109	109-113510	18:37:38, -06:46:55	1.00 km/s,lsrk,RADIO
110	110-113869	18:38:15, -06:47:52	1.00 km/s,lsrk,RADIO
111	111-113872	18:38:08, -06:46:55	1.00 km/s,lsrk,RADIO
112	112-113972	18:38:08, -06:45:54	1.00 km/s,lsrk,RADIO
113	113-114043	18:37:16, -06:38:29	1.00 km/s,lsrk,RADIO
114	114-114577	18:37:20, -06:31:56	1.00 km/s.lsrk,RADIO
115	115-114632	18:38:40, -06:41:23	1.00 km/s,lsrk.RADIO
116	116-115156	18:38:28, -06:32:06	1.00 km/s,lsrk.RADIO
117	117-115242	18:37:12, -06:21:23	1.00 km/s.lsrk.RADIO
118	118-115327	18:38:35, -06:30:40	1.00 km/s.lsrk.RADIO
119	119-115552	18:37:33, -06:20:10	1.00 km/s.lsrk RADIO
120	120-115679	18:37:30 -06:18:10	1.00 km/s lsrk RADIO

No.	Target	Ra,Dec (ICRS)	V,def,frameORz
121	121-115936	18:37:30, -06:14:15	1.00 km/s,lsrk,RADIO
122	122-115945	18:38:46, -06:23:52	1.00 km/s,lsrk,RADIO
123	123-115961	18:38:56, -06:24:52	1.00 km/s,lsrk,RADIO
124	124-115972	18:38:31, -06:21:37	1.00 km/s,lsrk,RADIO
125	125-116088	18:39:03, -06:24:10	1.00 km/s,lsrk,RADIO
126	126-116178	18:39:48, -06:28:46	1.00 km/s,lsrk,RADIO
127	127-116415	18:39:08, -06:20:04	1.00 km/s,lsrk,RADIO
128	128-116752	18:38:54, -06:12:30	1.00 km/s,lsrk,RADIO
129	129-117372	18:39:49, -06:10:27	1.00 km/s,lsrk,RADIO
130	130-117538	18:38:32, -05:57:47	1.00 km/s,lsrk,RADIO
131	131-117544	18:38:28, -05:57:12	1.00 km/s,lsrk,RADIO
132	132-117904	18:38:49, -05:53:36	1.00 km/s,lsrk,RADIO
133	133-117909	18:37:55, -05:46:32	1.00 km/s,lsrk,RADIO
134	134-118203	18:38:51, -05:49:11	1.00 km/s,lsrk,RADIO
135	135-118234	18:39:30, -05:53:44	1.00 km/s,lsrk,RADIO
136	136-118357	18:39:17, -05:50:01	1.00 km/s,lsrk,RADIO
137	137-G023.3891+0	18:33:14, -08:23:57	1.00 km/s,lsrk,RADIO
138	138-G023.6566-00	18:34:51, -08:18:21	1.00 km/s,lsrk,RADIO
139	139-G023.8176+0	18:33:19, -07:55:37	1.00 km/s,lsrk,RADIO
140	140-G024.6343-00	18:37:22, -07:31:41	1.00 km/s,lsrk,RADIO
141	141-G025.6498+0	18:34:20, -05:59:42	1.00 km/s,lsrk,RADIO

Note that one or more of the S/N estimates are < 3. Please double-check the RMS and/or line fluxes entered and/or address the issue below. Note that the bandwidth used for sensitivity is larger than 1/3 of the linewidth.

The S/N achieved for a resolution element that allows the line to be resolved will be lower than that reported.

- Justification for requested RMS and resulting S/N (and for spectral lines the bandwidth selected) for the sensitivity calculation.

A sensitivity of 100 µJy at 1.37 mm wavelength delivers a mass sensitivity of nearly 0.1 Msun using dust opacities form Ossenkopf & Henning with beta=2 and dust temperature of 17 K at 7 kpc, the maximum distance to our sources. This would allow to safely detect 0.3 M_sun sources, while our total source masses have a cutoff of 500 M_sun, so even with severe fragmentation we would discover all the fragments. With this, we will be able to sample the peak of a typical CMF in a low/intermediate-mass SF region like Aquila. Although in some cases we may be limited by the dynamic range, simulations are very successful in recovering all scales, as shown in Fig.2 in the proposal. Also, we found from past experience that self-cal can improve the dynamic range considerably.

For the lines maps, a spectral resolution of 0.5 km/s and a spatial resolution of 0.4" give a 1 sigma rms of 1.4 K, which is as shown in Fig. 2, is sufficient to analyze the line emission even in weaker cores, and could be further enhanced by spectral smoothing. Fig. 2 is based on real ALMA observations of a high-mass star-forming region. We will not be able to analyze the lines of all sources in that manner, but we expect that we will be able to do the analysis in enough sources to be worthwhile, and use 13CO in the ones weaker in H2CO or CH3CN.

-Justification of the chosen angular resolution and largest angular scale for the source(s) in this Science Goal.

We would like to get a resolution of about 0.4" to achieve a resolution of at least 2500 AU at all distances considered. This would allow to resolve the clusters sufficiently to determine the CMF, find large toroid-like rotating structures or circumbinary disks, and detect disk candidates for further studies. The largest scale is given by the desire to model the density and temperature structure on the clump scale, and to fully characterize the clumpßlevel

The configuration proposed by the OT for these requirements (C4-C1-ACA) has been verified to provide enough time for large programs to host our observations, if the sources can be spread out in an interval of +/- 3 h, as stated by the knowledge base, and verified by a helpdesk ticket. Thus, we do not exceed the time limit per LST interval for large programs, and our program poses no criticality in terms of scheduling feasibility for both requested configurations.

Correlator Comments

Note that the spectral resolution is larger than 1/3 of the the spectral line width and that your line may not be resolved.

Justification of the correlator set-up with particular reference to the number of spectral resolution elements per line width.

SG : 3 of 6 High-mass stars 2 Band 6

-	

ience Goal Parameters												
Ang.Res.	LAS	Requ	lested RMS	RMS Band	width	Re	p.Freq.	0	Cont. RMS	Cont. Bandwidth	Poln.Prod.	Non-standard mode
0.4000"	30.0"	100 µ	Jy, 16.1 mK	5158.757 km/s,	3.7 GHz	217.925000 GHz 100.216 µJy, 16.1 mK		6 μJy, 16.1 mK	3.750 GHz	XX,YY	No	
se of 12m Array (43 antennas)												
t_total(all configs)	t_sci	ience(C43-4)	t_total(C43-1)	Imaged area	#12m poin	ting	12m Mosai	c spacing	HPBW	t_per_point	Data Vol	Avg. Data Rate
14.4 h		6.5 h	3.7 h	8.9 "	130		offs	et	26.7 "	180.4 s	1635.7 GB	39.1 MB/s

Use of ACA 7m Array (10 antennas) and TP Array

t_total(ACA)	t_total(7m)	t_total(TP)	Imaged area	#7m pointing	7m Mosaic spacing	HPBW	t_per_point	Data Vol	Avg. Data Rate
25.6 h	25.6 h	0.0 h	15.3 "	130	offset	45.8 "	441.3 s	64.1 GB	0.9 MB/s

Spectral Setup : Spectral Line

BB	Center Freq Rest GHz	spw name	Eff #Ch p.p.	Bandwidth	Resolution	Vel. Bandwidth	Vel. Res.	Res. El. per FWHM
1	217.925000	Band 1	3840	1875.00 MHz	0.977 MHz	2579.4 km/s	1.343 km/s	1
2	220.000000	Band 2	3840	1875.00 MHz	0.977 MHz	2555.1 km/s	1.331 km/s	1
3	218.300000	H2CO lines	3840	468.75 MHz	244.141 kHz	643.7 km/s	0.335 km/s	3
4	220.600000	13CO and CH3CN	3840	468.75 MHz	244.141 kHz	637.0 km/s	0.332 km/s	3

130 Targets

130	Taigets		
No.	Target	Ra,Dec (ICRS)	V,def,frameORz
1	1-790635	16:00:31, -53:12:48	1.00 km/s,lsrk,RADIO
2	2-790672	16:00:16, -53:09:18	1.00 km/s,lsrk,RADIO
3	3-791907	16:02:22, -53:06:04	1.00 km/s,lsrk,RADIO
4	4-792053	16:00:39, -52:45:23	1.00 km/s,lsrk,RADIO
5	5-792192	16:02:37, -53:02:56	1.00 km/s,lsrk,RADIO
6	6-792265	16:00:48, -52:42:40	1.00 km/s,lsrk,RADIO
7	7-792278	16:02:45, -53:02:43	1.00 km/s,lsrk,RADIO
8	8-792355	16:03:32, -53:09:26	1.00 km/s,lsrk,RADIO
9	9-792397	16:00:54, -52:41:23	1.00 km/s,lsrk,RADIO
10	10-792437	16:02:19, -52:55:21	1.00 km/s,lsrk,RADIO
11	11-792499	16:00:31, -52:35:12	1.00 km/s,lsrk,RADIO
12	12-792543	16:01:08, -52:40:52	1.00 km/s,lsrk,RADIO
13	13-792545	15:59:38, -52:24:56	1.00 km/s,lsrk,RADIO
14	14-792650	15:59:36, -52:22:55	1.00 km/s,lsrk,RADIO
15	15-792829	16:01:32, -52:39:02	1.00 km/s,lsrk,RADIO
16	16-792881	16:01:45, -52:40:13	1.00 km/s,lsrk,RADIO
17	17-793196	16:02:13, -52:38:16	1.00 km/s,lsrk,RADIO
18	18-793695	15:58:07, -51:43:31	1.00 km/s,lsrk,RADIO
19	19-793710	15:58:07, -51:43:03	1.00 km/s,Isrk,RADIO
20	20-793728	15:58:49, -51:49:57	1.00 km/s,Isrk,RADIO
21	21-793779	15:59:27, -51:55:32	1.00 km/s,Isrk,RADIO
22	22-794763	16:00:37, -51:42:58	1.00 km/s,Isrk,RADIO
23	23-795321	16:04:32, -52:08:15	1.00 km/s,Isrk,RADIO
24	24-795004	16:03:43, -51:51:45	1.00 km/s,ISIK,RADIO
20	25-795769	10.07.33, -32.31.33	1.00 km/s lsrk RADIO
20	20-790707	16:00:22 E2:14:E1	1.00 km/s lsrk BADIO
28	28-707005	16:00:21 -52:15:59	1.00 km/s lsrk RADIO
20	29-797972	16:10:23 -52:06:54	1.00 km/s lsrk RADIO
30	30-798252	16:10:44 -52:05:49	1.00 km/s lsrk RADIO
31	31-798299	16:10:07, -51:58:43	1.00 km/s.lsrk.RADIO
32	32-798398	16:10:18, -51:58:43	1.00 km/s.lsrk.RADIO
33	33-798710	16:09:4751:48:40	1.00 km/s.lsrk.RADIO
34	34-798822	16:11:16, -52:01:51	1.00 km/s,lsrk,RADIO
35	35-799153	16:11:47, -52:02:30	1.00 km/s,lsrk,RADIO
36	36-799161	16:08:21, -51:27:54	1.00 km/s,lsrk,RADIO
37	37-799461	16:09:47, -51:38:22	1.00 km/s,lsrk,RADIO
38	38-799475	16:10:59, -51:50:23	1.00 km/s,lsrk,RADIO
39	39-799483	16:11:53, -51:59:14	1.00 km/s,lsrk,RADIO
40	40-799503	16:12:15, -52:02:32	1.00 km/s,lsrk,RADIO
41	41-799832	16:12:14, -51:57:33	1.00 km/s,lsrk,RADIO
42	42-799915	16:10:42, -51:40:32	1.00 km/s,lsrk,RADIO
43	43-800055	16:05:52, -50:48:07	1.00 km/s,lsrk,RADIO
44	44-800079	16:11:19, -51:43:47	1.00 km/s,lsrk,RADIO
45	45-800202	16:06:02, -50:47:47	1.00 km/s,lsrk,RADIO
46	46-800419	16:08:57, -51:15:12	1.00 km/s,lsrk,RADIO
47	47-800751	16:12:26, -51:46:16	1.00 km/s,lsrk,RADIO
48	48-800891	16:06:24, -50:43:07	1.00 km/s,lsrk,RADIO
49	49-800967	16:12:48, -51:47:28	1.00 km/s,lsrk,RADIO
50	50-801000	16:11:33, -51:34:48	1.00 km/s,lsrk,RADIO
51	51-801089	16:11:10, -51:29:42	1.00 km/s,lsrk,RADIO
52	52-801184	10:11:11, -51:28:41	1.00 km/s,Isrk,RADIO
53	53-801282	10:12:50, -51:43:28	1.00 km/s,Isrk,RADIO
54	54-801518	10:12:30, -51:35:56	1.00 km/s,Isrk,RADIO
55	55-601599 E6 9016E1	10.11:53, -51:28:30	1.00 km/s,ISFK,RADIO
50	57-901672	16-12-40 =1-26-44	
50	59-901752	16.12.00 -51.20.44	
50	59-801906	16:12:09, -01.28.37	1 00 km/s Jsrk RADIO
60	60-801981	16:12:26 -51:27:35	1 00 km/s lsrk RADIO
00	00 001001	10.12.20, 01.27.00	2.00 10/03/011/04/010

Expected Source Properties

	Peak Flux	SNR	Linewidth	RMS (over 1/3 linewidth)	linewidth / bandwidth used for sensitivity	Pol.	Pol. SNR		
Line	1.00 mJy	0.1	1 km/s	12.47 mJy, 2 K	0.0002	0.0%	0.0		
Continuum	1.00 mJy	10.0				0.0%	0.0		
Dynamic range	Dynamic range (cont flux/line rms): 0.1								
1 Tuning									

Tuning	Target	Rep. Freq. Sky GHz	RMS (Rep. Freq.)	RMS Achieved	
1	1,2,3,4,5,6,7,8,9,1	217.924273	99.81 µJy, 16.1 mK	99.81 uJy - 100.23 uJy	

NO.	larget	Ra,Dec (ICRS)	V,det,frameORz
61	61-802233	16:11:48, -51:16:30	1.00 km/s,Isrk,RADIO
62	62-802515	16:12:37, -51:18:38	1.00 km/s,Isrk,RADIO
63	63-802647	16:10:01, -50:49:31	1.00 km/s,lsrk,RADIO
64	64-802649	16:13:50, -51:27:50	1.00 km/s,lsrk,RADIO
65	65-802843	16:10:01, -50:45:10	1.00 km/s,lsrk,RADIO
66	66-803030	16:12:26, -51:04:54	1.00 km/s,lsrk,RADIO
67	67-803218	16:13:51, -51:15:15	1.00 km/s,lsrk,RADIO
68	68-804173	16:16:16, -51:18:24	1.00 km/s,lsrk,RADIO
69	69-804190	16:14:58, -51:05:13	1.00 km/s,lsrk,RADIO
70	70-804334	16:14:08, -50:54:04	1.00 km/s,lsrk,RADIO
71	71-804675	16:15:00, -50:56:07	1.00 km/s,lsrk,RADIO
72	72-804779	16:17:24, -51:17:45	1.00 km/s,lsrk,RADIO
73	73-805077	16:15:45, -50:55:54	1.00 km/s,lsrk,RADIO
74	74-805162	16:17:53, -51:15:13	1.00 km/s,lsrk,RADIO
75	75-805178	16:14:38, -50:43:05	1.00 km/s,lsrk,RADIO
76	76-805751	16:15:08, -50:38:42	1.00 km/s,lsrk,RADIO
77	77-805970	16:18:26, -51:07:10	1.00 km/s,lsrk,RADIO
78	78-806581	16:19:09, -51:03:47	1.00 km/s,lsrk,RADIO
79	79-806896	16:19:36, -51:03:21	1.00 km/s,lsrk,RADIO
80	80-806998	16:16:04, -50:27:36	1.00 km/s,lsrk,RADIO
81	81-807111	16:19:48, -51:02:16	1.00 km/s,lsrk,RADIO
82	82-807440	16:20:06, -51:00:02	1.00 km/s,lsrk,RADIO
83	83-807635	16:17:31, -50:32:33	1.00 km/s,lsrk,RADIO
84	84-807681	16:17:33, -50:32:26	1.00 km/s,lsrk,RADIO
85	85-807707	16:20:06, -50:56:46	1.00 km/s,lsrk,RADIO
86	86-808017	16:20:11, -50:53:12	1.00 km/s,lsrk,RADIO
87	87-808125	16:13:53, -49:49:24	1.00 km/s,lsrk,RADIO
88	88-808803	16:19:3550:36:41	1.00 km/s.lsrk.RADIO
89	89-808999	16:15:0549:50:11	1.00 km/s.lsrk.RADIO
90	90-809069	16:20:3750:43:49	1.00 km/s.lsrk.RADIO
91	91-809113	16:21:3750:52:47	1.00 km/s.lsrk.RADIO
92	92-809262	16:20:3850:41:46	1.00 km/s.lsrk.RADIO
93	93-809324	16:20:35, -50:40:48	1.00 km/s.lsrk.RADIO
94	94-809327	16:15:19, -49:48:48	1.00 km/s.lsrk.RADIO
95	95-809444	16:18:4750:22:19	1.00 km/s.lsrk.RADIO
96	96-809511	16:20:30, -50:38:10	1.00 km/s.lsrk.RADIO
97	97-809780	16.20.39 -50.36.17	1 00 km/s lsrk RADIO
98	98-809874	16:20:30 -50:33:39	1 00 km/s lsrk RADIO
99	99-809977	16:18:54 -50:16:54	1.00 km/s lsrk RADIO
100	100-810029	16:21:15 -50:39:05	1.00 km/s lsrk RADIO
101	101-810154	16:21:35 -50:40:52	1.00 km/s lsrk RADIO
102	102-810370	16.19.42 -50.10.52	
102	103-810788	16:21:17 -50:30:17	1 00 km/s lsrk RADIO
10/	104-810901	16.19.51 -50.15.10	1 00 km/s lsrk RADIO
104	105-810984	16.10.23 -50.00.42	
105	106-8113/1	16.20.20 -50.15.29	1 00 km/s lerk RADIO
107	107-811256	16:21:22 -50:15:20	
100	108-811517	16:21:32, -50:20:47	1 00 km/s lark DADIO
100	100-811712	16.20.37 -50.23.01	1 00 km/s lerk PADIO
110	110-812328	16.10.57 -/0.58.20	1 00 km/s lark DADIO
111	111_812/97	16.21.20 50.00.47	
112	112-812510	16.22.47 50.09.47	
112	112 012021	16:22:02 50:23:13	
11.4	114 012105	16:20:56 40:57:10	
115	112 013600	16.22.24 50.12.52	
110	116 010707	16:21:12 40:52:47	
116	117-813/3/	10:21:12, -49:52:17	1.00 km/s,ISrk,RADIO
117	117-814133	10:22:38, -50:00:56	1.00 km/s,Isrk,RADIO
118	118-814243	10:23:13, -50:04:52	
119	119-G329.2713+0	10:00:21, -52:48:47	1.00 km/s,Isrk,RADIO
120	120-G329.6098+0	16:02:03, -52:35:33	1.00 km/s,Isrk,RADIO

No.	Target	Ra,Dec (ICRS)	V,def,frameORz
121	121-G330.0699+0	16:00:15, -51:34:24	1.00 km/s,lsrk,RADIO
122	122-G331.2759-00	16:11:26, -51:41:57	1.00 km/s,lsrk,RADIO
123	123-G331.5180-00	16:12:08, -51:28:02	1.00 km/s,lsrk,RADIO
124	124-G331.6191-00	16:12:24, -51:21:42	1.00 km/s,lsrk,RADIO
125	125-G332.7013-00	16:19:47, -51:00:06	1.00 km/s,lsrk,RADIO
126	126-G332.9636-00	16:21:22, -50:52:58	1.00 km/s,lsrk,RADIO
127	127-G333.0682-00	16:20:48, -50:38:40	1.00 km/s,lsrk,RADIO
128	128-G333.1256-00	16:21:02, -50:35:55	1.00 km/s,lsrk,RADIO
129	129-G333.3151+0	16:19:29, -50:04:40	1.00 km/s,lsrk,RADIO
130	130-G333.9305-00	16:23:13, -49:48:42	1.00 km/s,lsrk,RADIO

Note that one or more of the S/N estimates are < 3. Please double-check the RMS and/or line fluxes entered and/or address the issue below. Note that the bandwidth used for sensitivity is larger than 1/3 of the linewidth.

The S/N achieved for a resolution element that allows the line to be resolved will be lower than that reported.

- Justification for requested RMS and resulting S/N (and for spectral lines the bandwidth selected) for the sensitivity calculation.

A sensitivity of 100 µJy at 1.37 mm wavelength delivers a mass sensitivity of nearly 0.1 Msun using dust opacities form Ossenkopf & Henning with beta=2 and dust temperature of 17 K at 7 kpc, the maximum distance to our sources. This would allow to safely detect 0.3 M_sun sources, while our total source masses have a cutoff of 500 M_sun, so even with severe fragmentation we would discover all the fragments. With this, we will be able to sample the peak of a typical CMF in a low/intermediate-mass SF region like Aquila. Although in some cases we may be limited by the dynamic range, simulations are very successful in recovering all scales, as shown in Fig.2 in the proposal. Also, we found from past experience that self-cal can improve the dynamic range considerably.

For the lines maps, a spectral resolution of 0.5 km/s and a spatial resolution of 0.4" give a 1 sigma rms of 1.4 K, which is as shown in Fig. 2, is sufficient to analyze the line emission even in weaker cores, and could be further enhanced by spectral smoothing. Fig. 2 is based on real ALMA observations of a high-mass star-forming region. We will not be able to analyze the lines of all sources in that manner, but we expect that we will be able to do the analysis in enough sources to be worthwhile, and use 13CO in the ones weaker in H2CO or CH3CN.

Justification of the chosen angular resolution and largest angular scale for the source(s) in this Science Goal.

We would like to get a resolution of about 0.4" to achieve a resolution of at least 2500 AU at all distances considered. This would allow to resolve the clusters sufficiently to determine the CMF, find large toroid-like rotating structures or circumbinary disks, and detect disk candidates for further studies. The largest scale is given by the desire to model the density and temperature structure on the clump scale, and to fully characterize the clumpßlevel

The configuration proposed by the OT for these requirements (C4-C1-ACA) has been verified to provide enough time for large programs to host our observations, if the sources can be spread out in an interval of +/- 3 h, as stated by the knowledge base, and verified by a helpdesk ticket. Thus, we do not exceed the time limit per LST interval for large programs, and our program poses no criticality in terms of scheduling feasibility for both requested configurations.

Correlator Comments

Note that the spectral resolution is larger than 1/3 of the the spectral line width and that your line may not be resolved.

Justification of the correlator set-up with particular reference to the number of spectral resolution elements per line width.

SG : 4 of 6 High-mass stars 3 Band 6

0

Science Goal Parameters												
Ang.Res.	LAS	Requ	uested RMS	RMS Band	lwidth	F	Rep.Freq.	(Cont. RMS	Cont. Bandwidth	Poln.Prod.	Non-standard mode
0.4000"	30.0"	100 µ	ıJy, 16.1 mK	5158.492 km/s	, 3.7 GHz	217.925000 GHz 94.146 µJy, 15.1 mK		6 μJy, 15.1 mK	3.750 GHz	XX,YY	No	
Use of 12m Array (43 antennas)												
t_total(all configs	s) t_so	cience(C43-4)	t_total(C43-1)	Imaged area	#12m poir	nting	12m Mosa	ic spacing	HPBW	t_per_point	Data Vol	Avg. Data Rate
12.6 h		53h	32h	89"	111		offs	set	26.7 "	192 7 s	1482 5 GB	39.8 MB/s

Use of ACA 7m Array (10 antennas) and TP Array

t_total(ACA)	t_total(7m)	t_total(TP)	Imaged area	#7m pointing	7m Mosaic spacing	HPBW	t_per_point	Data Vol	Avg. Data Rate
22.4 h	22.4 h	0.0 h	15.3 "	111	offset	45.8 "	421.3 s	58.1 GB	0.9 MB/s

Spectral Setup : Spectral Line

BB	Center Freq Rest GHz	spw name	Eff #Ch p.p.	Bandwidth	Resolution	Vel. Bandwidth	Vel. Res.	Res. El. per FWHM
1	217.925000	Band 1	3840	1875.00 MHz	0.977 MHz	2579.2 km/s	1.343 km/s	1
2	220.000000	Band 2	3840	1875.00 MHz	0.977 MHz	2554.9 km/s	1.331 km/s	1
3	218.300000	H2CO lines	3840	468.75 MHz	244.141 kHz	643.7 km/s	0.335 km/s	3
4	220.600000	13CO and CH3CN	3840	468.75 MHz	244.141 kHz	637.0 km/s	0.332 km/s	3

111 Targets

No.	Target	Ra,Dec (ICRS)	V,det,frameORz
1	1-125404	18:42:42, -04:15:34	1.00 km/s,lsrk,RADIO
2	2-125419	18:42:05, -04:10:40	1.00 km/s,lsrk,RADIO
3	3-125470	18:42:53, -04:16:03	1.00 km/s,lsrk,RADIO
4	4-125727	18:42:4204:09:46	1.00 km/s.lsrk.RADIO
5	5-125751	18:42:3904:08:50	1.00 km/s.lsrk.RADIO
6	6-125761	18:42:49, -04:09:54	1.00 km/s.lsrk.RADIO
7	7-125906	18:44:15 -04:17:55	1 00 km/s lsrk RADIO
8	8-126162	18:42:50 -04:03:09	1 00 km/s lsrk RADIO
0	0-126222	18:42:54 -04:02:30	1.00 km/s lsrk PADIO
10	10-126348	18:42:52 -03:59:53	1.00 km/s lsrk RADIO
11	11-126426	18:42:27 -02:55:28	1.00 km/s lsrk PADIO
12	12-126427	18:42:12 -04:01:12	1.00 km/s lsrk RADIO
12	12-120427	18:42:25 -02:52:20	1.00 km/s lsrk RADIO
14	14 126604	10.42.33, -03.33.20	1.00 km/c lork BADIO
14	14-120094	10:44:42 04:01:24	1.00 km/s lark DADIO
15	10-127045	10:42:25 02:51:50	1.00 km/s lark DADIO
10	10-12/113	10.43.35, -03.51.59	1.00 km/s,ISIK,RADIO
1/	17-127433	18:43:29, -03:46:55	1.00 km/s,Isrk,RADIO
18	18-12/485	18:44:39, -03:54:41	1.00 km/s,Isrk,RADIO
19	19-12/623	18:44:46, -03:53:34	1.00 km/s,Isrk,RADIO
20	20-127705	18:44:48, -03:52:43	1.00 km/s,lsrk,RADIO
21	21-127895	18:43:27, -03:39:44	1.00 km/s,lsrk,RADIO
22	22-127952	18:43:12, -03:37:02	1.00 km/s,lsrk,RADIO
23	23-128153	18:43:15, -03:35:06	1.00 km/s,lsrk,RADIO
24	24-128159	18:43:18, -03:35:25	1.00 km/s,lsrk,RADIO
25	25-128272	18:44:51, -03:45:46	1.00 km/s,lsrk,RADIO
26	26-128280	18:44:42, -03:44:30	1.00 km/s,lsrk,RADIO
27	27-128490	18:44:06, -03:36:47	1.00 km/s,lsrk,RADIO
28	28-128730	18:44:55, -03:40:25	1.00 km/s,lsrk,RADIO
29	29-128764	18:42:43, -03:23:02	1.00 km/s,lsrk,RADIO
30	30-128789	18:44:56, -03:39:45	1.00 km/s,lsrk,RADIO
31	31-128945	18:44:54, -03:37:38	1.00 km/s,lsrk,RADIO
32	32-129868	18:45:30, -03:32:21	1.00 km/s,lsrk,RADIO
33	33-129919	18:44:09, -03:21:13	1.00 km/s,lsrk,RADIO
34	34-129935	18:44:22, -03:22:46	1.00 km/s,lsrk,RADIO
35	35-130092	18:44:23, -03:21:23	1.00 km/s,lsrk,RADIO
36	36-130523	18:44:35, -03:17:10	1.00 km/s,lsrk,RADIO
37	37-130634	18:44:27, -03:14:54	1.00 km/s,lsrk,RADIO
38	38-131122	18:45:1903:15:40	1.00 km/s.lsrk.RADIO
39	39-131178	18:46:30, -03:24:05	1.00 km/s.lsrk.RADIO
40	40-131513	18:47:18, -03:25:45	1.00 km/s.lsrk.RADIO
41	41-131655	18:45:40, -03:11:21	1.00 km/s.lsrk.RADIO
42	42-131976	18:43:48 -02:52:31	1.00 km/s lsrk RADIO
43	43-132381	18:47:31, -03:15:13	1.00 km/s.lsrk.RADIO
44	44-132437	18:47:35 -03:14:49	1 00 km/s lsrk RADIO
44	45-132444	18:47:25 -03:12:27	1.00 km/s lsrk RADIO
40	46-133125	18:45:07 -02:45:50	1 00 km/s Jerk RADIO
40	47-133246	19:46:26 -02:45:30	1.00 km/s lerk PADIO
41	41-133240	19-46-42 02-25-25	
40	40-133491	10.40.42, -U2.52.35	1.00 km/s lock DAD/O
49	49-133522	10.47.20, -02.38:03	1.00 km/s lask DAD/C
50	50-133523	10.40:08, -02:47:46	1.00 km/s,ISIK,RADIO
51	51-133563	18:45:47, -02:44:40	1.00 km/s,lsrk,RADIO
52	52-133651	18:45:59, -02:45:05	1.00 km/s,Isrk,RADIO
53	53-133674	18:45:43, -02:42:52	1.00 km/s,lsrk,RADIO
54	54-133805	18:48:39, -03:03:56	1.00 km/s,lsrk,RADIO
55	55-133859	18:46:40, -02:47:54	1.00 km/s,lsrk,RADIO
56	56-134007	18:45:45, -02:38:59	1.00 km/s,lsrk,RADIO
57	57-134152	18:45:28, -02:34:56	1.00 km/s,lsrk,RADIO
58	58-134169	18:46:03, -02:39:21	1.00 km/s,lsrk,RADIO
59	59-134196	18:48:49, -03:00:19	1.00 km/s,lsrk,RADIO
60	60-134426	18:46:31, -02:39:34	1.00 km/s,lsrk,RADIO
-			

Expected Source Properties

	Peak Flux	SNR	Linewidth (over 1/3 lin		linewidth / bandwidth used for sensitivity	Pol.	Pol. SNR			
Line	1.00 mJy	0.1	1 km/s	11.71 mJy, 1.9 K	0.0002	0.0%	0.0			
Continuum	1.00 mJy	10.6				0.0%	0.0			
Dynamic rang	Dynamic range (cont flux/line rms): 0.1									

1 Tuning

Tuning	Target	Rep. Freq. Sky GHz	RMS (Rep. Freq.)	RMS Achieved		
1	1,2,3,4,5,6,7,8,9,1	217.924273	94.21 µJy, 15.2 mK	94.21 uJy - 94.59 uJy		

No.	Target	Ra,Dec (ICRS)	V,def,frameORz
61	61-134457	18:45:58, -02:35:02	1.00 km/s,lsrk,RADIO
62	62-134548	18:46:08, -02:35:18	1.00 km/s,lsrk,RADIO
63	63-134902	18:47:11, -02:37:47	1.00 km/s,lsrk,RADIO
64	64-135368	18:47:17, -02:30:27	1.00 km/s,lsrk,RADIO
65	65-135457	18:47:22, -02:29:34	1.00 km/s,lsrk,RADIO
66	66-135892	18:47:41, -02:25:22	1.00 km/s,lsrk,RADIO
67	67-135972	18:45:44, -02:09:04	1.00 km/s,lsrk,RADIO
68	68-136060	18:47:10, -02:18:48	1.00 km/s,lsrk,RADIO
69	69-136318	18:48:14, -02:23:34	1.00 km/s,lsrk,RADIO
70	70-136646	18:48:10, -02:18:36	1.00 km/s,lsrk,RADIO
71	71-136865	18:48:46, -02:20:17	1.00 km/s,lsrk,RADIO
72	72-137102	18:47:37, -02:08:19	1.00 km/s,lsrk,RADIO
73	73-137144	18:46:33, -01:59:29	1.00 km/s.lsrk.RADIO
74	74-137279	18:47:2702:04:38	1.00 km/s.lsrk.RADIO
75	75-137309	18:47:2102:03:30	1.00 km/s.lsrk.RADIO
76	76-137347	18:47:40, -02:05:28	1.00 km/s.lsrk.RADIO
77	77-137435	18:47:46, -02:05:01	1.00 km/s.lsrk.RADIO
78	78-137601	18:47:35 -02:01:48	1 00 km/s lsrk RADIO
79	79-137633	18:47:53 -02:03:35	1 00 km/s lsrk RADIO
80	80-137664	18:47:36 -02:01:10	1 00 km/s lsrk RADIO
81	81-137707	18:47:00 -01:56:09	1 00 km/s lsrk RADIO
82	82-138186	18:47:42 -01:56:12	1.00 km/s lsrk RADIO
83	83-138/01	18:46:36 -01:45:21	1.00 km/s lsrk RADIO
8/	84-138429	18:48:08 -01:56:50	1.00 km/s lsrk RADIO
85	85-138/197	18:47:01 -01:47:23	1.00 km/s lsrk RADIO
86	86-138609	18:48:02 -01:53:53	1.00 km/s lsrk RADIO
87	87-1386/1	18:46:56 -01:45:09	1 00 km/s lsrk RADIO
88	88-138716	18:48:01 -01:52:34	1 00 km/s lsrk RADIO
80	89-1387/1	18:47:28 -01:48:06	1 00 km/s lsrk RADIO
<u>00</u>	00-138866	18:47:00 -01:44:12	1.00 km/s lsrk RADIO
01	01-138030	18:45:11 -01:28:02	1.00 km/s lsrk RADIO
02	02-138070	18:47:27 -01:44:50	1 00 km/s lsrk RADIO
02	92-130073	18:48:48 -01:54:23	1 00 km/s lsrk RADIO
0/	0/_130278	18:48:01 -01:46:00	1.00 km/s lsrk RADIO
05	05_120715	18:47:26 -01:25:55	1.00 km/s lsrk PADIO
06	95-139713	10.47.20, -01.33.33	1.00 km/s lsrk PADIO
07	90-140407 97_170707	18:40:30 -01:27:45	1.00 km/s lsrk PADIO
00	00 1/1200	10.49.30, -01.37.43	
90	90-141500	10.49.33, -01.29.04	
100	100 1/2195	10.40.00, -01.13.37	
100	100-142105	10.40.42, -01.09.39	
101	101-142250	10.30.11, -01.20.35	
102	102-142907	10.49.17, -01.03.39	
104	104 142910	10.40.43, -00.33.13	
105	105 1/2012	10.49.04, -00.57.14	
100	106 C030 3321 10	10.49.22, -00.30.33	
107	107 C020 2272+0	10.42.20, -04.01.20	
100	100 C020 1001 00	10.42.37, -04.02.02	
100	100 C030 0715 00	10.41.03, -02.30.30	
1109	110 CO21 2002 0	10.40.UZ, -UI:5Z:57	
111	111 0022 0510 00	10.40.12, -01:20:30	
	111-0032.0518-00	18.50.09, -00:49:29	1.00 KIII/S,ISIK,RADIO

Note that one or more of the S/N estimates are < 3. Please double-check the RMS and/or line fluxes entered and/or address the issue below. Note that the bandwidth used for sensitivity is larger than 1/3 of the linewidth.

The S/N achieved for a resolution element that allows the line to be resolved will be lower than that reported.

- Justification for requested RMS and resulting S/N (and for spectral lines the bandwidth selected) for the sensitivity calculation.

A sensitivity of 100 µJy at 1.37 mm wavelength delivers a mass sensitivity of nearly 0.1 Msun using dust opacities form Ossenkopf & Henning with beta=2 and dust temperature of 17 K at 7 kpc, the maximum distance to our sources. This would allow to safely detect 0.3 M_sun sources, while our total source masses have a cutoff of 500 M_sun, so even with severe fragmentation we would discover all the fragments. With this, we will be able to sample the peak of a typical CMF in a low/intermediate-mass SF region like Aquila. Although in some cases we may be limited by the dynamic range, simulations are very successful in recovering all scales, as shown in Fig.2 in the proposal. Also, we found from past experience that self-cal can improve the dynamic range considerably.

For the lines maps, a spectral resolution of 0.5 km/s and a spatial resolution of 0.4" give a 1 sigma rms of 1.4 K, which is as shown in Fig. 2, is sufficient to analyze the line emission even in weaker cores, and could be further enhanced by spectral smoothing. Fig. 2 is based on real ALMA observations of a high-mass star-forming region. We will not be able to analyze the lines of all sources in that manner, but we expect that we will be able to do the analysis in enough sources to be worthwhile, and use 13CO in the ones weaker in H2CO or CH3CN.

Justification of the chosen angular resolution and largest angular scale for the source(s) in this Science Goal.

We would like to get a resolution of about 0.4" to achieve a resolution of at least 2500 AU at all distances considered. This would allow to resolve the clusters sufficiently to determine the CMF, find large toroid-like rotating structures or circumbinary disks, and detect disk candidates for further studies. The largest scale is given by the desire to model the density and temperature structure on the clump scale, and to fully characterize the clumpßlevel

The configuration proposed by the OT for these requirements (C4-C1-ACA) has been verified to provide enough time for large programs to host our observations, if the sources can be spread out in an interval of +/- 3 h, as stated by the knowledge base, and verified by a helpdesk ticket. Thus, we do not exceed the time limit per LST interval for large programs, and our program poses no criticality in terms of scheduling feasibility for both requested configurations.

Correlator Comments

Note that the spectral resolution is larger than 1/3 of the the spectral line width and that your line may not be resolved.

Justification of the correlator set-up with particular reference to the number of spectral resolution elements per line width.

SG : 5 of 6 High-mass stars 4 Band 6

cience Goal Parameters												
Ang.Res.	LAS	Requested RMS		RMS Band	RMS Bandwidth		ep.Freq.	(Cont. RMS	Cont. Bandwidth	Poln.Prod.	Non-standard mode
0.4000"	0.4000" 30.0" 100 μJy, 16.1 mK 5158.891 km/s, 3.7 GHz		3.7 GHz	217.9	25000 GHz	94.974 μJy, 15.3 mK		3.750 GHz	XX,YY	No		
Use of 12m Array (43	Use of 12m Array (43 antennas)											
t_total(all configs)	t_sc	ience(C43-4)	t_total(C43-1)	Imaged area	#12m poir	nting	12m Mosai	c spacing	HPBW	t_per_point	Data Vol	Avg. Data Rate
6.5 h		2.8 h 1.7 h		8.9 " 51			offset		26.7 "	217.3 s	753.7 GB	39.4 MB/s

Use of ACA 7m Array (10 antennas) and TP Array

t_total(ACA)	t_total(7m)	t_total(TP)	Imaged area	#7m pointing	7m Mosaic spacing	HPBW	t_per_point	Data Vol	Avg. Data Rate
11.6 h	11.6 h	0.0 h	15.3 "	51	offset	45.8 "	503.0 s	29.5 GB	0.9 MB/s

Spectral Setup : Spectral Line

BB	Center Freq Rest GHz	spw name	Eff #Ch p.p.	Bandwidth	Resolution	Vel. Bandwidth	Vel. Res.	Res. El. per FWHM
1	217.925000	Band 1	3840	1875.00 MHz	0.977 MHz	2579.4 km/s	1.343 km/s	1
2	220.000000	Band 2	3840	1875.00 MHz	0.977 MHz	2555.1 km/s	1.331 km/s	1
3	218.300000	H2CO lines	3840	468.75 MHz	244.141 kHz	643.8 km/s	0.335 km/s	3
4	220.600000	13CO and CH3CN	3840	468.75 MHz	244.141 kHz	637.0 km/s	0.332 km/s	3

51 Targets

No.	Target	Ra,Dec (ICRS)	V,def,frameORz
1	1-701007	13:01:26, -62:25:48	1.00 km/s,lsrk,RADIO
2	2-702356	13:05:31, -62:30:00	1.00 km/s,lsrk,RADIO
3	3-702472	13:05:52, -62:28:27	1.00 km/s,lsrk,RADIO
4	4-702831	13:06:59, -62:33:03	1.00 km/s,lsrk,RADIO
5	5-703167	13:07:53, -62:28:39	1.00 km/s,lsrk,RADIO
6	6-703373	13:08:25, -62:25:57	1.00 km/s,lsrk,RADIO
7	7-703396	13:08:27, -62:24:28	1.00 km/s,lsrk,RADIO
8	8-703465	13:08:37, -62:25:53	1.00 km/s,lsrk,RADIO
9	9-703466	13:08:31, -62:14:21	1.00 km/s,lsrk,RADIO
10	10-704225	13:10:21, -62:42:15	1.00 km/s,lsrk,RADIO
11	11-704454	13:10:42, -62:43:14	1.00 km/s,lsrk,RADIO
12	12-704779	13:11:14, -62:47:25	1.00 km/s,lsrk,RADIO
13	13-704792	13:11:13, -62:45:07	1.00 km/s,lsrk,RADIO
14	14-704824	13:11:11, -62:38:40	1.00 km/s,lsrk,RADIO
15	15-704833	13:11:09, -62:33:22	1.00 km/s,lsrk,RADIO
16	16-704955	13:11:18, -62:30:32	1.00 km/s,lsrk,RADIO
17	17-705051	13:11:29, -62:33:21	1.00 km/s,lsrk,RADIO
18	18-705084	13:11:32, -62:32:11	1.00 km/s,lsrk,RADIO
19	19-705194	13:11:53, -62:47:19	1.00 km/s,lsrk,RADIO
20	20-705229	13:11:44, -62:29:03	1.00 km/s,lsrk,RADIO
21	21-705424	13:12:15, -62:48:50	1.00 km/s,lsrk,RADIO
22	22-705450	13:11:48, -62:07:17	1.00 km/s,lsrk,RADIO
23	23-705483	13:11:51, -62:06:50	1.00 km/s,lsrk,RADIO
24	24-705723	13:12:32, -62:34:21	1.00 km/s,lsrk,RADIO
25	25-705736	13:12:35, -62:37:18	1.00 km/s,lsrk,RADIO
26	26-705768	13:12:36, -62:33:33	1.00 km/s,lsrk,RADIO
27	27-705852	13:12:42, -62:30:52	1.00 km/s,lsrk,RADIO
28	28-706044	13:13:05, -62:31:41	1.00 km/s,lsrk,RADIO
29	29-706276	13:13:45, -62:51:27	1.00 km/s,lsrk,RADIO
30	30-706291	13:13:26, -62:23:05	1.00 km/s,lsrk,RADIO
31	31-706608	13:13:57, -62:24:50	1.00 km/s,lsrk,RADIO
32	32-706708	13:14:20, -62:45:05	1.00 km/s,lsrk,RADIO
33	33-706733	13:14:22, -62:46:00	1.00 km/s,lsrk,RADIO
34	34-706785	13:14:26, -62:44:29	1.00 km/s,lsrk,RADIO
35	35-707313	13:15:25, -62:51:01	1.00 km/s,lsrk,RADIO
36	36-707463	13:15:31, -62:40:40	1.00 km/s,lsrk,RADIO
37	37-707948	13:16:43, -62:58:32	1.00 km/s,lsrk,RADIO
38	38-708080	13:16:48, -62:50:37	1.00 km/s,lsrk,RADIO
39	39-708137	13:16:53, -62:48:38	1.00 km/s,lsrk,RADIO
40	40-708358	13:17:15, -62:42:25	1.00 km/s,lsrk,RADIO
41	41-708562	13:17:52, -62:52:50	1.00 km/s,lsrk,RADIO
42	42-709153	13:19:08, -62:33:42	1.00 km/s,lsrk,RADIO
43	43-709193	13:19:18, -62:33:55	1.00 km/s,lsrk,RADIO
44	44-709982	13:21:28, -62:42:40	1.00 km/s,lsrk,RADIO
45	45-711927	13:26:54, -62:03:01	1.00 km/s,lsrk,RADIO
46	46-713364	13:32:32, -62:47:29	1.00 km/s,lsrk,RADIO
47	47-713413	13:32:35, -62:45:29	1.00 km/s,lsrk,RADIO
48	48-713784	13:32:53, -62:07:49	1.00 km/s,lsrk,RADIO
40	49-G304.8872+00	13:08:12, -62:10:22	1.00 km/s,lsrk,RADIO
49			
50	50-G305.2017+00	13:11:10, -62:34:38	1.00 km/s,lsrk,RADIO

Expected Source Properties

	Peak Flux	SNR	Linewidth	RMS (over 1/3 linewidth)	linewidth / bandwidth used for sensitivity	Pol.	Pol. SNR	
Line	1.00 mJy	0.1	1 km/s	11.82 mJy, 1.9 K	0.0002	0.0%	0.0	
Continuum	1.00 mJy	10.5		-		0.0%	0.0	
Dynamic range (cont flux/line rms): 0.1								

1 Tuning

Tuning	Target	Rep. Freq.	RMS	RMS		
		Sky GHz	(Rep. Freq.)	Achieved		
1	1,2,3,4,5,6,7,8,9,1	217.924273	94.79 μJy, 15.3 mK	94.79 uJy - 95.21 uJy		

Note that one or more of the S/N estimates are < 3. Please double-check the RMS and/or line fluxes entered and/or address the issue below. Note that the bandwidth used for sensitivity is larger than 1/3 of the linewidth.

The S/N achieved for a resolution element that allows the line to be resolved will be lower than that reported.

- Justification for requested RMS and resulting S/N (and for spectral lines the bandwidth selected) for the sensitivity calculation.

A sensitivity of 100 µJy at 1.37 mm wavelength delivers a mass sensitivity of nearly 0.1 Msun using dust opacities form Ossenkopf & Henning with beta=2 and dust temperature of 17 K at 7 kpc, the maximum distance to our sources. This would allow to safely detect 0.3 M_sun sources, while our total source masses have a cutoff of 500 M_sun, so even with severe fragmentation we would discover all the fragments. With this, we will be able to sample the peak of a typical CMF in a low/intermediate-mass SF region like Aquila. Although in some cases we may be limited by the dynamic range, simulations are very successful in recovering all scales, as shown in Fig.2 in the proposal. Also, we found from past experience that self-cal can improve the dynamic range considerably.

For the lines maps, a spectral resolution of 0.5 km/s and a spatial resolution of 0.4" give a 1 sigma rms of 1.4 K, which is as shown in Fig. 2, is sufficient to analyze the line emission even in weaker cores, and could be further enhanced by spectral smoothing. Fig. 2 is based on real ALMA observations of a high-mass star-forming region. We will not be able to analyze the lines of all sources in that manner, but we expect that we will be able to do the analysis in enough sources to be worthwhile, and use 13CO in the ones weaker in H2CO or CH3CN.

Justification of the chosen angular resolution and largest angular scale for the source(s) in this Science Goal.

We would like to get a resolution of about 0.4" to achieve a resolution of at least 2500 AU at all distances considered. This would allow to resolve the clusters sufficiently to determine the CMF, find large toroid-like rotating structures or circumbinary disks, and detect disk candidates for further studies. The largest scale is given by the desire to model the density and temperature structure on the clump scale, and to fully characterize the clumpßlevel

The configuration proposed by the OT for these requirements (C4-C1-ACA) has been verified to provide enough time for large programs to host our observations, if the sources can be spread out in an interval of +/- 3 h, as stated by the knowledge base, and verified by a helpdesk ticket. Thus, we do not exceed the time limit per LST interval for large programs, and our program poses no criticality in terms of scheduling feasibility for both requested configurations.

Correlator Comments

Note that the spectral resolution is larger than 1/3 of the the spectral line width and that your line may not be resolved.

Justification of the correlator set-up with particular reference to the number of spectral resolution elements per line width.

SG : 6 of 6 High-mass stars 5 Band 6

0

Science Goal Parameters												
Ang.Res.	Res. LAS Requested RMS		RMS Band	RMS Bandwidth		Rep.Freq.	Cont. RMS		Cont. Bandwidth	Poln.Prod.	Non-standard mode	
0.4000"	30.0"	100 µ	Jy, 16.1 mK	5158.77 km/s, 3.7 GHz 217.9		925000 GHz	91.72	5 μJy, 14.8 mK	3.750 GHz	XX,YY	No	
Use of 12m Array (43 antennas)												
t_total(all configs)	t_scie	nce(C43-4)	t_total(C43-1)	Imaged area	#12m poir	nting	12m Mosa	ic spacing	HPBW	t_per_point	Data Vol	Avg. Data Rate
9.9 h		3.9 h	2.5 h	8.9 "	77		offs	set	26.7 "	217.1 s	1135.8 GB	39.5 MB/s

Use of ACA 7m Array (10 antennas) and TP Array

t_total(ACA)	t_total(7m)	t_total(TP)	Imaged area	#7m pointing	7m Mosaic spacing	HPBW	t_per_point	Data Vol	Avg. Data Rate
17.5 h	17.5 h	0.0 h	15.3 "	77	offset	45.8 "	452.1 s	44.5 GB	0.9 MB/s

Spectral Setup : Spectral Line

BB	Center Freq Rest GHz	spw name	Eff #Ch p.p.	Bandwidth	Resolution	Vel. Bandwidth	Vel. Res.	Res. El. per FWHM
1	217.925000	Band 1	3840	1875.00 MHz	0.977 MHz	2579.4 km/s	1.343 km/s	1
2	220.000000	Band 2	3840	1875.00 MHz	0.977 MHz	2555.1 km/s	1.331 km/s	1
3	218.300000	H2CO lines	3840	468.75 MHz	244.141 kHz	643.7 km/s	0.335 km/s	3
4	220.600000	13CO and CH3CN	3840	468.75 MHz	244.141 kHz	637.0 km/s	0.332 km/s	3

77 Targets

	argets		
No.	Target	Ra,Dec (ICRS)	V,def,frameORz
1	1-776981	15:43:2254:21:33	1.00 km/s.lsrk.RADIO
2	2-777339	15:42:0053:58:55	1.00 km/s.lsrk.RADIO
3	3-777573	15:49:18, -55:16:52	1.00 km/s,lsrk,RADIO
4	4-777707	15:47:50, -54:58:32	1.00 km/s,lsrk,RADIO
5	5-777843	15:47:1754:50:35	1.00 km/s.lsrk.RADIO
6	6-778177	15:45:53, -54:30:01	1.00 km/s,lsrk,RADIO
7	7-778289	15:46:11, -54:31:16	1.00 km/s,lsrk,RADIO
8	8-778664	15:43:33, -53:55:29	1.00 km/s,lsrk,RADIO
9	9-778802	15:44:33, -54:05:31	1.00 km/s,lsrk,RADIO
10	10-778839	15:44:16, -54:01:55	1.00 km/s,lsrk,RADIO
11	11-778855	15:44:01, -53:58:45	1.00 km/s,lsrk,RADIO
12	12-779459	15:45:39, -54:10:41	1.00 km/s,lsrk,RADIO
13	13-779523	15:44:59, -54:02:21	1.00 km/s,lsrk,RADIO
14	14-779698	15:45:26, -54:05:41	1.00 km/s,lsrk,RADIO
15	15-779984	15:48:55, -54:40:38	1.00 km/s,lsrk,RADIO
16	16-780104	15:46:21, -54:10:43	1.00 km/s,lsrk,RADIO
17	17-780386	15:48:23, -54:29:15	1.00 km/s,lsrk,RADIO
18	18-780504	15:48:33, -54:29:01	1.00 km/s,lsrk,RADIO
19	19-780649	15:49:35, -54:37:54	1.00 km/s,lsrk,RADIO
20	20-780892	15:49:56, -54:38:30	1.00 km/s,lsrk,RADIO
21	21-781268	15:49:03, -54:23:34	1.00 km/s,lsrk,RADIO
22	22-781345	15:49:07, -54:23:04	1.00 km/s,lsrk,RADIO
23	23-781741	15:49:11, -54:17:30	1.00 km/s,lsrk,RADIO
24	24-781827	15:50:40, -54:32:01	1.00 km/s,lsrk,RADIO
25	25-781938	15:50:53, -54:31:47	1.00 km/s,lsrk,RADIO
26	26-781946	15:47:14, -53:51:26	1.00 km/s,lsrk,RADIO
27	27-782096	15:50:54, -54:28:41	1.00 km/s,lsrk,RADIO
28	28-782264	15:51:00, -54:26:50	1.00 km/s,lsrk,RADIO
29	29-782293	15:51:29, -54:31:22	1.00 km/s,lsrk,RADIO
30	30-782519	15:52:28, -54:36:07	1.00 km/s,lsrk,RADIO
31	31-782569	15:51:20, -54:22:57	1.00 km/s,lsrk,RADIO
32	32-783177	15:50:24, -54:01:10	1.00 km/s,lsrk,RADIO
33	33-783304	15:50:18, -53:57:05	1.00 km/s,lsrk,RADIO
34	34-783350	15:49:19, -53:45:12	1.00 km/s,lsrk,RADIO
35	35-783681	15:53:43, -54:24:44	1.00 km/s,lsrk,RADIO
36	36-784256	15:53:57, -54:14:02	1.00 km/s,lsrk,RADIO
37	37-784393	15:52:59, -54:00:47	1.00 km/s,lsrk,RADIO
38	38-784481	15:51:34, -53:43:24	1.00 km/s,lsrk,RADIO
39	39-784611	15:54:33, -54:12:33	1.00 km/s,lsrk,RADIO
40	40-784674	15:55:21, -54:19:53	1.00 km/s,lsrk,RADIO
41	41-784722	15:54:38, -54:11:26	1.00 km/s,lsrk,RADIO
42	42-784793	15:49:08, -53:09:41	1.00 km/s,lsrk,RADIO
43	43-784890	15:54:38, -54:08:09	1.00 km/s,lsrk,RADIO
44	44-784966	15:52:33, -53:44:28	1.00 km/s,lsrk,RADIO
45	45-784993	15:52:39, -53:45:16	1.00 km/s,lsrk,RADIO
46	46-785085	15:52:35, -53:43:06	1.00 km/s,lsrk,RADIO
47	47-785119	15:53:01, -53:47:06	1.00 km/s,lsrk,RADIO
48	48-785411	15:52:57, -53:40:53	1.00 km/s,lsrk,RADIO
49	49-785620	15:56:45, -54:16:25	1.00 km/s,lsrk,RADIO
50	50-785707	15:56:21, -54:10:29	1.00 km/s,lsrk,RADIO
51	51-786059	15:54:52, -53:47:24	1.00 km/s,lsrk,RADIO
52	52-786316	15:52:13, -53:13:09	1.00 km/s,lsrk,RADIO
53	53-786375	15:56:12, -53:54:45	1.00 km/s,lsrk,RADIO
54	54-786495	15:54:27, -53:33:43	1.00 km/s,lsrk,RADIO
55	55-786515	15:52:35, -53:12:59	1.00 km/s,lsrk,RADIO
56	56-786608	15:52:38, -53:12:02	1.00 km/s,lsrk,RADIO
57	57-786678	15:53:50, -53:24:03	1.00 km/s,lsrk,RADIO
58	58-786900	15:54:31, -53:27:11	1.00 km/s,lsrk,RADIO
59	59-787062	15:57:55, -54:00:09	1.00 km/s,lsrk,RADIO
60	60-787212	15:57:59, -53:57:59	1.00 km/s,lsrk,RADIO

Expected Source Properties

	Peak Flux	SNR	Linewidth	RMS (over 1/3 linewidth)	linewidth / bandwidth used for sensitivity	Pol.	Pol. SNR
Line	1.00 mJy	0.1	1 km/s	11.41 mJy, 1.8 K	0.0002	0.0%	0.0
Continuum	1.00 mJy	10.9				0.0%	0.0
Dynamic range (cont flux/line rms): 0.1							
1 Tuning							

Tuning	Target	Rep. Freq. Sky GHz	RMS (Rep. Freq.)	RMS Achieved
1	1,2,3,4,5,6,7,8,9,1	217.924273	91.59 μJy, 14.7 mK	91.59 uJy - 91.98 uJy

No.	Target	Ra,Dec (ICRS)	V,def,frameORz
61	61-787345	15:56:01, -53:34:35	1.00 km/s,lsrk,RADIO
62	62-787536	15:54:18, -53:12:46	1.00 km/s,lsrk,RADIO
63	63-787643	15:55:46, -53:26:50	1.00 km/s,lsrk,RADIO
64	64-787699	15:58:08, -53:50:55	1.00 km/s,lsrk,RADIO
65	65-787947	15:56:55, -53:32:39	1.00 km/s,lsrk,RADIO
66	66-787998	15:54:02, -53:00:17	1.00 km/s,lsrk,RADIO
67	67-788845	15:55:28, -52:55:58	1.00 km/s,lsrk,RADIO
68	68-788890	15:56:36, -53:06:52	1.00 km/s,lsrk,RADIO
69	69-789652	15:58:50, -53:14:35	1.00 km/s,lsrk,RADIO
70	70-789993	15:57:28, -52:52:42	1.00 km/s,lsrk,RADIO
71	71-790555	15:55:21, -52:18:57	1.00 km/s,lsrk,RADIO
72	72-790568	15:55:29, -52:20:11	1.00 km/s,lsrk,RADIO
73	73-G326.4755+00	15:43:18, -54:07:35	1.00 km/s,lsrk,RADIO
74	74-G326.6618+00	15:45:02, -54:09:03	1.00 km/s,lsrk,RADIO
75	75-G327.1192+00	15:47:32, -53:52:39	1.00 km/s,lsrk,RADIO
76	76-G327.9455-00	15:54:34, -53:50:42	1.00 km/s,lsrk,RADIO
77	77-G328.5487+00	15:56:01, -53:09:43	1.00 km/s,lsrk,RADIO

Note that one or more of the S/N estimates are < 3. Please double-check the RMS and/or line fluxes entered and/or address the issue below. Note that the bandwidth used for sensitivity is larger than 1/3 of the linewidth.

The S/N achieved for a resolution element that allows the line to be resolved will be lower than that reported.

-Justification for requested RMS and resulting S/N (and for spectral lines the bandwidth selected) for the sensitivity calculation.

A sensitivity of 100 µJy at 1.37 mm wavelength delivers a mass sensitivity of nearly 0.1 Msun using dust opacities form Ossenkopf & Henning with beta=2 and dust temperature of 17 K at 7 kpc, the maximum distance to our sources. This would allow to safely detect 0.3 M_sun sources, while our total source masses have a cutoff of 500 M_sun, so even with severe fragmentation we would discover all the fragments. With this, we will be able to sample the peak of a typical CMF in a low/intermediate-mass SF region like Aquila. Although in some cases we may be limited by the dynamic range, simulations are very successful in recovering all scales, as shown in Fig.2 in the proposal. Also, we found from past experience that self-cal can improve the dynamic range considerably.

For the lines maps, a spectral resolution of 0.5 km/s and a spatial resolution of 0.4" give a 1 sigma rms of 1.4 K, which is as shown in Fig. 2, is sufficient to analyze the line emission even in weaker cores, and could be further enhanced by spectral smoothing. Fig. 2 is based on real ALMA observations of a high-mass star-forming region. We will not be able to analyze the lines of all sources in that manner, but we expect that we will be able to do the analysis in enough sources to be worthwhile, and use 13CO in the ones weaker in H2CO or CH3CN.

Justification of the chosen angular resolution and largest angular scale for the source(s) in this Science Goal.

We would like to get a resolution of about 0.4" to achieve a resolution of at least 2500 AU at all distances considered. This would allow to resolve the clusters sufficiently to determine the CMF, find large toroid-like rotating structures or circumbinary disks, and detect disk candidates for further studies. The largest scale is given by the desire to model the density and temperature structure on the clump scale, and to fully characterize the clumpßlevel

The configuration proposed by the OT for these requirements (C4-C1-ACA) has been verified to provide enough time for large programs to host our observations, if the sources can be spread out in an interval of +/- 3 h, as stated by the knowledge base, and verified by a helpdesk ticket. Thus, we do not exceed the time limit per LST interval for large programs, and our program poses no criticality in terms of scheduling feasibility for both requested configurations.

Correlator Comments

Note that the spectral resolution is larger than 1/3 of the the spectral line width and that your line may not be resolved.

Justification of the correlator set-up with particular reference to the number of spectral resolution elements per line width.